首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bactericidal power of fresh human plasma against Klebsiella pneumoniae and Escherichia coli was extremely sensitive to changes in Eh and pH. At a high Eh (approx. +200 mV) the bacteria were destroyed, but rapid regrowth occurred when the Eh was lowered to approx. -400 mV. Abolition of the bactericidal effect was also produced by adding ferric iron at a high Eh (approx. +200 mV). Lowering the pH to 6.50 reduced or prevented the bactericidal effect. These results are probably related to the availability of iron for bacterial growth, and could be important for understanding the development of infection in injured or diseased tissue.  相似文献   

2.
The transferrins are a family of proteins that bind free iron in the blood and bodily fluids. Serum transferrins function to deliver iron to cells via a receptor-mediated endocytotic process as well as to remove toxic free iron from the blood and to provide an anti-bacterial, low-iron environment. Lactoferrins (found in bodily secretions such as milk) are only known to have an anti-bacterial function, via their ability to tightly bind free iron even at low pH, and have no known transport function. Though these proteins keep the level of free iron low, pathogenic bacteria are able to thrive by obtaining iron from their host via expression of outer membrane proteins that can bind to and remove iron from host proteins, including both serum transferrin and lactoferrin. Furthermore, even though human serum transferrin and lactoferrin are quite similar in sequence and structure, and coordinate iron in the same manner, they differ in their affinities for iron as well as their receptor binding properties: the human transferrin receptor only binds serum transferrin, and two distinct bacterial transport systems are used to capture iron from serum transferrin and lactoferrin. Comparison of the recently solved crystal structure of iron-free human serum transferrin to that of human lactoferrin provides insight into these differences.  相似文献   

3.
Transferrins are secreted proteins that bind iron. The well-studied transferrins are mammalian serum transferrin, which is involved in iron transport, and mammalian lactoferrin, which functions as an immune protein. Lactoferrin and lactoferrin-derived peptides have bactericidal activity, and the iron-free form of lactoferrin has bacteriostatic activity due to its ability to sequester iron. Insect transferrin is similar in sequence to both serum transferrin and lactoferrin, and its functions are not well-characterized; however, many studies of insect transferrin indicate that it has some type of immune function. The goal of this study was to determine the specific immune functions of transferrin from Manduca sexta (tobacco hornworm). We verified that transferrin expression is upregulated in response to infection in M. sexta larvae and determined that the concentration of transferrin in hemolymph increases from 2 μM to 10 μM following an immune challenge. It is also present in molting fluid and prepupal midgut fluid, two extracellular fluids with immune capabilities. No immune-induced proteolytic cleavage of transferrin in hemolymph was observed; therefore, M. sexta transferrin does not appear to be a source of antimicrobial peptides. Unlike iron-saturated lactoferrin, iron-saturated transferrin had no detectable antibacterial activity. In contrast, 1 μM iron-free transferrin inhibited bacterial growth, and this inhibition was blocked by supplementing the culture medium with 1 μM iron. Our results suggest that M. sexta transferrin does not have bactericidal activity, but that it does have a bacteriostatic function that depends on its iron sequestering ability. This study supports the hypothesis that insect transferrin participates in an iron withholding strategy to protect insects from infectious bacteria.  相似文献   

4.
Erwinia herbicola Eh1087 isolated from apple blossom inhibits development of Erwinia amylovora in immature pear fruit and produces a broad spectrum antibiotic activity in vitro that is bactericidal for Erw. amylovora. The antibiotic activity is present in cell-free culture supernatant fluids of late log-early stationary phase cultures of Eh1087. This antibiotic activity is not inhibited by proteases, excess ferric ions or essential amino acids. It is stable to acidic and basic pH and is inactivated at high temperature. The antibiotic activity is inactivated by β-lactamase digestion.  相似文献   

5.
P K Bali  P Aisen 《Biochemistry》1991,30(41):9947-9952
Iron release to PPi from N- and C-terminal monoferric transferrins and their complexes with transferrin receptor has been studied at pH 7.4 and 5.6 in 0.05 M HEPES or MES/0.1 M NaCl/0.01 M CHAPS at 25 degrees C. The two sites exhibit kinetic heterogeneity in releasing iron. The N-terminal form is slightly less labile than its C-terminal counterpart at pH 7.4, but much more facile in releasing iron at pH 5.6. At pH 7.4, iron removal by 0.05 M pyrophosphate from each form of monoferric transferrin complexed to the receptor is considerably slower than from the corresponding free monoferric transferrin. However, at pH 5.6, complexation of transferrin to its receptor affects the two forms differently. The rate of iron release to 0.005 M pyrophosphate by the N-terminal species is substantially the same whether transferrin is free or bound to the receptor. In contrast, the C-terminal form releases iron much faster when complexed to the receptor than when free. Urea/PAGE analysis of iron removal from free and receptor-complexed diferric transferrin at pH 5.6 reveals that its C-terminal site is also more labile in the complex, but its N-terminal site is more labile in free diferric transferrin. Thus, the newly discovered role of transferrin receptor in modulating iron release from transferrin predominantly involves the C-terminal site. This observation helps explain the prevalence of circulating N-terminal monoferric transferrin in the human circulation.  相似文献   

6.
Lactoferrin and Iron: structural and dynamic aspects of binding and release   总被引:1,自引:1,他引:0  
Lactoferrin (Lf) has long been recognized as a member of the transferrin family of proteins and an important regulator of the levels of free iron in the body fluids of mammals. Its ability to bind ferric iron with high affinity (KD approximately 10(-20) M) and to retain it to low pH gives the protein bacteriostatic and antioxidant properties. This ability can be well understood in terms of its three dimensional (3D) structure. The molecule is folded into two homologous lobes (N- and C-lobes) with each lobe binding a single Fe3+ ion in a deep cleft between two domains. The iron sites are highly conserved, and highly favorable for iron binding. Iron binding and release are associated with large conformational changes in which the protein adopts either open or closed states. Comparison of available apolactoferrin structures suggests that iron binding is dependent on the dynamics of the open state. What triggers release of the tightly bound iron, however, and why lactoferrin retains iron to much lower pH than its serum homologue, transferrin, has been the subject of much speculation. Comparisons of structural and functional data on lactoferrins and transferrins now suggest that the key factor comes from cooperative interactions between the two lobes of the molecule, mediated by two alpha-helices.  相似文献   

7.
P K Bali  O Zak  P Aisen 《Biochemistry》1991,30(2):324-328
Iron removal by pyrophosphate from human serum diferric transferrin and the complex of transferrin with its receptor was studied in 0.05 M HEPES or MES buffers containing 0.1 M NaCl and 0.01 M CHAPS at 25 degrees C at pH 7.4, 6.4, and 5.6. At each pH, the concentration of pyrophosphate was adjusted to achieve rates of release amenable to study over a reasonable time course. Released iron was separated from protein-bound iron by poly(ethylene glycol) precipitation of aliquots drawn from the reaction mixture at various times during the course of a kinetic run. The amount of 59Fe label associated with the protein and pyrophosphate was determined from the radioactivity of precipitate and supernatant, respectively, in each aliquot. Iron removal of 0.05 M pyrophosphate at pH 7.4 from diferric transferrin bound to the receptor is considerably slower than that from free diferric transferrin, with observed pseudo-first-order rate constants of 0.020 and 0.191 min-1, respectively. For iron removal by 0.01 M pyrophosphate at pH 6.4, corresponding rate constants are 0.031 and 0.644 min-1. However, at pH 5.6, iron removal by 0.001 M pyrophosphate is faster from diferric transferrin bound to its receptor than from free transferrin (observed rate constants of 0.819 and 0.160 min-1, respectively). Thus, the transferrin receptor not only facilitates the removal of iron from diferric transferrin at the low pH that prevails in endocytic vesicles but may also reduce its accessibility to iron acceptors at extracellular pH, thereby minimizing the likelihood of nonspecific release of iron from transferrin at the cell surface.  相似文献   

8.
The iron-carrying serum protein transferrin is required for the proliferation and differentiation of embryonic tissues in culture. We studied the expression and role of transferrin receptors in two model systems using a monoclonal antibody against the transferrin receptor of mice. The addition of 20-100 micrograms/ml antibody to a chemically defined culture medium containing transferrin (10 micrograms/ml) inhibited morphogenesis and cell proliferation in kidneys and teeth. However, the antibody did not inhibit development when iron was delivered to the cells by a lipophilic iron chelator i.e., by-passing the receptor-mediated pathway. Hence, the binding of the receptor antibody to the receptor apparently did not affect cell proliferation, and the antibody was not toxic to the tissues. Our results suggest that the antibody to the transferrin receptor inhibits development by blocking the normal endocytotic route of iron delivery. Cells derived from embryonic kidneys and teeth expressed the transferrin receptor when cultured as monolayers. However, using immunofluorescent techniques, we were unable to detect the receptor in frozen tissue sections. It is possible that the seeding of cells in monolayer cultures affects the expression of the transferrin receptor, since it is known that all types of cells require transferrin for continued proliferation in culture. Organ-cultured kidney mesenchymal cells are not initially responsive to transferrin, but they acquire responsiveness as a consequence of an inductive tissue interaction. Although it remains unknown as to whether the acquisition of transferrin responsiveness is directly related to the expression of transferrin receptors, our results suggest that transferrin and its receptors play a role in embryonic morphogenesis.  相似文献   

9.
Serum transferrin is the major iron transport protein in humans. Its function depends on its ability to bind iron with very high affinity, yet to release this bound iron at the lower intracellular pH. Possible explanations for the release of iron from transferrin at low pH include protonation of a histidine ligand and the existence of a pH-sensitive "trigger" involving a hydrogen-bonded pair of lysines in the N-lobe of transferrin. We have determined the crystal structure of the His249Glu mutant of the N-lobe half-molecule of human transferrin and compared its iron-binding properties with those of the wild-type protein and other mutants. The crystal structure, determined at 2.4 A resolution (R-factor 19.8%, R(free) 29.4%), shows that Glu 249 is directly bound to iron, in place of the His ligand, and that a local movement of Lys 296 has broken the dilysine interaction. Despite the loss of this potentially pH-sensitive interaction, the H249E mutant is only slightly more acid-stable than wild-type and releases iron slightly faster. We conclude that the loss of the dilysine interaction does make the protein more acid stable but that this is counterbalanced by the replacement of a neutral ligand (His) by a negatively charged one (Glu), thus disrupting the electroneutrality of the binding site.  相似文献   

10.
There are several options available for intravenous application of iron supplements, but they all have a similar structure:—an iron core surrounded by a carbohydrate coating. These nanoparticles require processing by the reticuloendothelial system to release iron, which is subsequently picked up by the iron-binding protein transferrin and distributed throughout the body, with most of the iron supplied to the bone marrow. This process risks exposing cells and tissues to free iron, which is potentially toxic due to its high redox activity. A new parenteral iron formation, ferric pyrophosphate citrate (FPC), has a novel structure that differs from conventional intravenous iron formulations, consisting of an iron atom complexed to one pyrophosphate and two citrate anions. In this study, we show that FPC can directly transfer iron to apo-transferrin. Kinetic analyses reveal that FPC donates iron to apo-transferrin with fast binding kinetics. In addition, the crystal structure of transferrin bound to FPC shows that FPC can donate iron to both iron-binding sites found within the transferrin structure. Examination of the iron-binding sites demonstrates that the iron atoms in both sites are fully encapsulated, forming bonds with amino acid side chains in the protein as well as pyrophosphate and carbonate anions. Taken together, these data demonstrate that, unlike intravenous iron formulations, FPC can directly and rapidly donate iron to transferrin in a manner that does not expose cells and tissues to the damaging effects of free, redox-active iron.  相似文献   

11.
12.
Some 40% of knee-joint synovial fluids from arthritic patients show the presence of bleomycin-detectable iron. This is released from a protein component of the fluid to bleomycin at acidic pH values. Patients whose fluids release iron have lower contents of transferrin, lactoferrin and caeruloplasmin than do patients whose fluids do not release iron to bleomycin. These proteins are important extracellular antioxidants, and measured antioxidant activities are extremely low in the iron-releasing fluids. The propensity of some fluids to release iron at low pH values, characteristic of the microenvironment beneath adherent macrophages, coupled with their decreased antioxidant protection against iron-stimulated oxygen-radical damage, might explain previously reported correlations between clinical disease severity, lipid peroxide content and the presence of bleomycin-detectable iron [Rowley, Gutteridge, Blake, Farr & Halliwell (1984) Clin. Sci. 66, 691-695].  相似文献   

13.
The killing of Pasteurella septica by horse antiserum has features not previously associated with serum bactericidal reactions. The present work showed that lowering the pH from 7-4 to 6-8 abolished the action of antiserum. The bactericidal effect and the degradation of RNA seen when antiserum is added to P. septica growing in horse serum, were abolished at pH 6-8 in much the same way as when haem compounds were added to the system. Addition of chloramphenicol, rifampicin or puromycin to P. septica growing apparently normally in antiserum at pH 6-8 or in antiserum containing haem compounds led to rapid killing of the bacteria and to degration of their RNA. Addition of these antibiotics to P. septica growing in normal serum produced only bacteriostasis and did not induce RNA breakdown. In contrast, nalidixic acid, although inhibiting growth, did not induce rapid killing and RNA breakdown under the same conditions. These findings were unexpected and led to a reassessment of ideas concerning the mechanism of action of specific antiserum to P. septica. Although iron compounds clearly abolish the bactericidal based simply on an interference with bacterial iron supply is no longer sufficient. The process is more complex and must involve other factors.  相似文献   

14.
Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals.  相似文献   

15.
P K Bali  P Aisen 《Biochemistry》1992,31(16):3963-3967
Iron removal by PPi from the N- and C-terminal binding sites of both free and receptor-complexed transferrin, when the partner site remains occupied with kinetically inert Co(III), has been studied at pH 7.4 and 5.6, at 25 degrees C. At extracellular pH, 7.4, the C-terminal site of free mixed-metal proteins is slightly more labile than its N-terminal counterpart in releasing iron to 0.05 M PPi. The rate and extent of iron removal are retarded from both sites when transferrins are receptor-bound. At endosomal pH, 5.6, the two sites exhibit greater kinetic heterogeneity in iron release to 0.005 M PPi. The N-terminal site is 6 times more facile in relinquishing iron than the C-terminal site when mixed-metal transferrins are free. However, the two sites are affected oppositely upon binding to the receptor. Iron release from the C-terminal site of receptor-complexed CoN-transferrin-FeC is 4 times faster than that from receptor-free protein. In contrast, iron removal from the N-terminal site of receptor-complexed FeN-transferrin-CoC is slowed by a factor of 2 compared to that from free protein. These results help explain our previous observation of a receptor-induced switch in site lability during iron removal from diferric transferrin at pH 5.6 (Bali & Aisen, 1991). Site-site cooperative interactions between the two sites of doubly-occupied transferrin during iron release are altered upon binding to receptor at pH 5.6. Iron in the otherwise weaker binding site of the N-terminal lobe is stabilized, while iron in the relatively stable binding site of the C-terminal lobe is labilized.  相似文献   

16.
Abstract The ability of the marine bacterium Vibrio vulnificus to grow in sera from patients with haemochromatosis and from normal human volunteers was investigated. Studies showed that although V. vulnificus possesses potential iron uptake systems, the organism is unable to multiply in normal human sera. However, it grows rapidly in serum from patients with haemochromatosis. This growth was found to be due solely to the presence of freely available iron.  相似文献   

17.
Bacterial iron homeostasis   总被引:36,自引:0,他引:36  
Iron is essential to virtually all organisms, but poses problems of toxicity and poor solubility. Bacteria have evolved various mechanisms to counter the problems imposed by their iron dependence, allowing them to achieve effective iron homeostasis under a range of iron regimes. Highly efficient iron acquisition systems are used to scavenge iron from the environment under iron-restricted conditions. In many cases, this involves the secretion and internalisation of extracellular ferric chelators called siderophores. Ferrous iron can also be directly imported by the G protein-like transporter, FeoB. For pathogens, host-iron complexes (transferrin, lactoferrin, haem, haemoglobin) are directly used as iron sources. Bacterial iron storage proteins (ferritin, bacterioferritin) provide intracellular iron reserves for use when external supplies are restricted, and iron detoxification proteins (Dps) are employed to protect the chromosome from iron-induced free radical damage. There is evidence that bacteria control their iron requirements in response to iron availability by down-regulating the expression of iron proteins during iron-restricted growth. And finally, the expression of the iron homeostatic machinery is subject to iron-dependent global control ensuring that iron acquisition, storage and consumption are geared to iron availability and that intracellular levels of free iron do not reach toxic levels.  相似文献   

18.
Abstract: Iron is a universal cofactor for mitochondrial energy generation and supports the growth and differentiation of all cell types. In the CNS, iron is a key component of systems responsible for myelination and the synthesis of several neurotransmitters. In this study the spatial and temporal pattern of iron and its regulatory proteins transferrin and ferritin are quantitatively examined in the rat CNS during the first 3 weeks of postnatal life and in adults and aged animals. The midbrain, the cerebral cortex, and the cerebellum-pons are examined independently. Iron, transferrin, and ferritin concentrations are highest in all three brain regions at birth and decrease in each region to minimum levels during the third postnatal week. The decrease in levels of iron, transferrin, and ferritin is most pronounced in the cerebellum-pons and cortex and least in the midbrain. From postnatal day 17, iron (total iron content) and ferritin levels increase throughout the lifetime of the rat. In contrast, transferrin levels remain fairly constant in each brain region after postnatal day 24. The midbrain region, which includes the iron-rich regions such as the globus pallidus, substantia nigra, and red nucleus, has the least change in iron with development, has the highest level of ferritin during development, and consistently has the highest level of transferrin at all ages. These observations are consistent with reports that iron is important for normal motor function. Transferrin did not increase after postnatal day 24 in the three brain regions examined despite increasing amounts of iron, which implies a decrease in iron mobility in the aged rats, a finding that is consistent with observations of human brain tissue. The data reported in this study demonstrate that iron acquisition and mobilization systems in the CNS are established early in development and that the overall pattern of acquisition among brain regions is similar. These data offer support and insight into established concepts that a sufficient iron supply is critical for normal neurological development.  相似文献   

19.
Little is known about the transport of iron into the mammary secretory cell and the process of milk iron secretion. The concentration of iron in milk is remarkably unaffected by maternal iron status, suggesting that the uptake of iron into the mammary gland is regulated. It is known that iron enters other cells via transferrin receptor-mediated endocytosis. This study was designed to isolate and characterize the mammary gland transferrin receptor in lactating rat mammary tissue using immunochemical techniques. The existence of functional mammary gland transferrin receptors in lactating rodents was demonstrated using radiolabel-binding techniques. Isolation of mammary transferrin receptors by affinity chromatography was confirmed using immunoelectrophoresis and slot blot analysis. The intact transferrin receptor was found to have a molecular weight of 176 kd as determined by Western blotting followed by scanning densitometry. Reduction of the receptor with beta-mercaptoethanol gave a molecular weight of 98 kd. An additional immunoreactive band of 135 kd was observed. The presence of transferrin receptors in normal lactating rat mammary tissue is likely to explain iron transport into mammary tissue for both cellular metabolism and milk iron secretion.  相似文献   

20.
Zak O  Aisen P 《Biochemistry》2003,42(42):12330-12334
Human transferrin, like other members of the transferrin class of iron-binding proteins, is a bilobal structure, the product of duplication and fusion of an ancestral gene during the course of biochemical evolution. Although the two lobes exhibit 45% sequence identity and identical ligand structures of their iron-binding sites (one in each lobe), they differ in their iron-binding properties and their responsiveness to complex formation with the transferrin receptor. A variety of interlobe interactions modulating these iron-binding functions has been described. We have now studied the kinetics of iron release to pyrophosphate from the isolated recombinant C-lobe and from that lobe in the intact protein, each free and bound to receptor. The striking finding is that the rates of iron release at the pH of the endosome to which transferrin is internalized by the iron-dependent cell are similar in the free proteins but 18 times faster from full-length monoferric transferrin selectively loaded with iron in the C-lobe than from isolated C-lobe when each is complexed to the receptor. The possibility that the faster release in the receptor complex of the full-length protein at endosomal pH contributes to the evolutionary advantage of the bilobal structure is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号