首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitogenic action of LPA in prostate   总被引:4,自引:0,他引:4  
The lipid growth factor lysophosphatidic acid (LPA) elicits multiple cellular responses, including cell growth and survival. LPA acts upon target cells by activating its cognate receptors, which belong to the G protein-coupled endothelial differentiation gene (EDG) family. To date, three known LPA receptors, termed LPA1, LPA2 and LPA3, have been molecularly characterized and cloned. Here, we review recent data describing the molecular steps involved in the LPA receptor-mediated activation of mitogenic extracellular signal-regulated kinase (ERK) pathway in prostate cancer. Induction of ERK by LPA proceeds via Gbetagamma-dependent activation of tyrosine kinases, including the epidermal growth factor (EGF) receptor and c-Src. Further, LPA-induced ERK activation involves matrix metalloproteinases (MMPs), which cause the release of active EGFR ligands. Finally, we present data demonstrating a correlation between the mitogenic effects of LPA and expression of the lp(A1) gene in the prostate cancer cells.  相似文献   

2.
3.
The gastric pathogen Helicobacter pylori is known to activate epithelial cell signaling pathways that regulate numerous inflammatory response genes. The aim of this study was to elucidate the pathway leading to extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in H. pylori-infected AGS gastric epithelial cells. We find that H. pylori, via activation of the epidermal growth factor (EGF) receptor activates the small GTP-binding protein Ras, which in turn, mediates ERK1/2 phosphorylation. cag+ strains of H. pylori are able to induce greater EGF receptor activation than cag- strains, and studies with isogenic mutants indicate that an intact type IV bacterial secretion system is required for this effect. Blockade of EGF receptor activation using tyrphostin AG1478 prevents H. pylori-mediated Ras activation, inhibits ERK1/2 phosphorylation, and substantially decreases interleukin-8 gene expression and protein production. Investigations into the mechanism of EGF receptor activation, using heparin, a metalloproteinase inhibitor and neutralizing antibodies reveal that H. pylori transactivates the EGF receptor via activation of the endogenous ligand heparin-binding EGF-like growth factor. Transactivation of gastric epithelial cell EGF receptors may be instrumental in regulating both proliferative and inflammatory responses induced by cag+ H. pylori infection.  相似文献   

4.
Prostaglandin (PG) E(2) E-series prostanoid-2 (EP2) receptor is elevated in numerous carcinomas including the endometrium and has been implicated in mediating the effects of PGE(2) on vascular function. In this study, we investigated the intracellular signaling pathways that are activated by the EP2 receptor and their role in regulation of the expression of vascular endothelial growth factor in endometrial adenocarcinoma (Ishikawa) cells. Ishikawa cells were stably transfected with EP2 receptor cDNA in the sense or antisense directions. Treatment of Ishikawa cells with PGE(2) rapidly induced transactivation of the epidermal growth factor receptor (EGFR) and activation of ERK1/2 via the EP2 receptor. Preincubation of cells with chemical inhibitors of protein kinase A, c-Src, and EGFR kinase abolished the EP2-induced activation of EGFR and ERK1/2. PGE(2) signaling via the EP2 receptor also promoted the mRNA expression and secretion of vascular endothelial growth factor protein in Ishikawa cells. This effect was inhibited by preincubation with chemical inhibitors of EGFR kinase, ERK1/2 signaling, and small inhibitory RNA molecules targeted against the EGFR. Therefore, we have demonstrated that elevated EP2 receptor expression may facilitate the PGE(2)-induced release of proangiogenic factors in reproductive tumor cells via intracellular cAMP-mediated transactivation of the EGFR and ERK1/2 pathways.  相似文献   

5.
Prostaglandins (PGs), bioactive lipid molecules produced by cyclooxygenase enzymes (COX-1 and COX-2), have diverse biological activities, including growth-promoting actions on gastrointestinal mucosa. They are also implicated in the growth of colonic polyps and cancers. However, the precise mechanisms of these trophic actions of PGs remain unclear. As activation of the epidermal growth factor receptor (EGFR) triggers mitogenic signaling in gastrointestinal mucosa, and its expression is also upregulated in colonic cancers and most neoplasms, we investigated whether PGs transactivate EGFR. Here we provide evidence that prostaglandin E2 (PGE2) rapidly phosphorylates EGFR and triggers the extracellular signal-regulated kinase 2 (ERK2)--mitogenic signaling pathway in normal gastric epithelial (RGM1) and colon cancer (Caco-2, LoVo and HT-29) cell lines. Inactivation of EGFR kinase with selective inhibitors significantly reduces PGE2-induced ERK2 activation, c-fos mRNA expression and cell proliferation. Inhibition of matrix metalloproteinases (MMPs), transforming growth factor-alpha (TGF-alpha) or c-Src blocked PGE2-mediated EGFR transactivation and downstream signaling indicating that PGE2-induced EGFR transactivation involves signaling transduced via TGF-alpha, an EGFR ligand, likely released by c-Src-activated MMP(s). Our findings that PGE2 transactivates EGFR reveal a previously unknown mechanism by which PGE2 mediates trophic actions resulting in gastric and intestinal hypertrophy as well as growth of colonic polyps and cancers.  相似文献   

6.
We have recently reported that osteopontin (OPN) stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells (Das, R., Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 28593-28606). However, the role(s) of OPN on AP-1-mediated uPA secretion and cell motility and the involvement of c-Src/epidermal growth factor receptor (EGFR) in these processes in breast cancer cells are not well defined. In this study we report that OPN induces alpha(v)beta(3) integrin-mediated c-Src kinase activity in both highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. Ligation of OPN with alpha(v)beta(3) integrin induces kinase activity and tyrosine phosphorylation of EGFR in MDA-MB-231 and wild type EGFR-transfected MCF-7 cells, and this was inhibited by the dominant negative form of c-Src (dn c-Src) indicating that c-Src kinase plays a crucial role in this process. OPN induces association between alpha(v)beta(3) integrin and EGFR on the cell membrane in a macromolecular form with c-Src. Furthermore, OPN induces alpha(v)beta(3) integrin/EGFR-mediated ERK1/2 phosphorylation and AP-1 activation. Moreover, dn c-Src also suppressed the OPN-induced phosphatidylinositol (PI) 3-kinase activity in these cells indicating that c-Src acts as master switch in regulating MEK/ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways. OPN-induced ERK phosphorylation, AP-1 activation, uPA secretion, and cell motility were suppressed when cells were transfected with dn c-Src or pretreated with alpha(v)beta(3) integrin antibody, c-Src kinase inhibitor (pp2), EGFR tyrosine kinase inhibitor (PD153035), and MEK-1 inhibitor (PD98059). To our knowledge, this is the first report that OPN induces alpha(v)beta(3) integrin-mediated AP-1 activity and uPA secretion by activating c-Src/EGFR/ERK signaling pathways and further demonstrates a functional molecular link between OPN-induced integrin/c-Src-dependent EGFR phosphorylation and ERK/AP-1-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

7.
BACKGROUND AND AIMS: GPCR stimulation by various ligands including histamine has been shown to transactivate the epidermal growth factor receptor (EGFR). This study examines the functional interactions between the H2 receptor and the EGFR in the regulation of matrix metalloproteinase-1 (MMP-1) secretion and gene expressions in cultured gastric epithelial cells. METHODS: AGS cells were incubated for up to 24 h with either histamine or heparin binding-epidermal growth factor (HB-EGF) and MMP-1 release was determined by immunoassay. MMP-1 responses to histamine and HB-EGF were further tested by the use of H2 receptor antagonist, EGFR inhibitor and mitogen activator protein kinase (MAPK) inhibitor. The role of EGFR in MMP-1 release was further tested in cells transfected with specific EGFR siRNA. EGFR and ERK1/2 phosphorylation was determined by Western blot analysis. MMP-1 gene expression was determined by RNase protection assay (RPA). RESULTS: Histamine and HB-EGF caused a dose-dependent release of MMP-1 with maximal responses that were 2.7- and 4.5-fold greater, respectively, than control, P<0.001. Famotidine prevented histamine-mediated MMP-1 release and AG1478 and EGFR siRNA completely inhibited MMP-1 secretion stimulated by both histamine and HB-EGF. Both histamine and HB-EGF stimulation of MMP-1 release was associated with activation of ERK1/2. MAPK inhibition also prevented histamine-and HB-EGF-induced MMP-1 secretion. Results of MMP-1 gene expression, either stimulatory or inhibitory, paralleled responses to MMP-1 secretion. CONCLUSION: Histamine stimulation of the H2 receptor on AGS cells evoked MMP-1 secretion and gene up regulation that was dependent on transactivation of the EGFR and downstream activation of MAPK.  相似文献   

8.
Phospholipase D (PLD) hydrolyzes phosphatidylcholine into phosphatidic acid (PA), a lipidic mediator that may act directly on cellular proteins or may be metabolized into lysophosphatidic acid (LPA). We previously showed that PLD contributed to the mitogenic effect of endothelin-1 (ET-1) in a leiomyoma cell line (ELT3 cells). In this work, we tested the ability of exogenous PA and PLD from Streptomyces chromofuscus (scPLD) to reproduce the effect of endogenous PLD in ELT3 cells and the possibility that these agents acted through LPA formation. We found that PA, scPLD, and LPA stimulated thymidine incorporation. LPA and scPLD induced extracellular signal-regulated kinase (ERK(1/2)) mitogen-activated protein kinase activation. Using Ki16425, an LPA(1)/LPA(3) receptor antagonist and small interfering RNA targeting LPA(1) receptor, we demonstrated that scPLD acted through LPA production and LPA(1) receptor activation. We found that scPLD induced LPA production by hydrolyzing lysophosphatidylcholine through its lysophospholipase D (lysoPLD) activity. Autotaxin (ATX), a naturally occurring lysoPLD, reproduced the effects of scPLD. By contrast, endogenous PLD stimulated by ET-1 failed to produce LPA. These results demonstrate that scPLD stimulated ELT3 cell proliferation by an LPA-dependent mechanism, different from that triggered by endogenous PLD. These data suggest that in vivo, an extracellular lysoPLD such as ATX may participate in leiomyoma growth through local LPA formation.  相似文献   

9.
Activated fibroblast growth factor receptor 1 (FGFR1) propagates FGF signals through multiple intracellular pathways via intermediates FRS2, PLCgamma, and Ras. Conflicting reports exist concerning the interaction between FGFR1 and Src family kinases. To address the role of c-Src in FGFR1 signaling, we compared proliferative responses of murine embryonic fibroblasts (MEF) deficient in c-Src, Yes, and Fyn to MEF expressing either endogenous levels or overexpressing c-Src. MEF with endogenous c-Src had significantly greater FGF-induced DNA synthesis and proliferation than cells lacking or overexpressing c-Src. This was related directly to c-Src expression by analysis of c-Src-deficient cells transfected with and sorted for varying levels of a c-Src expression vector. This suggests an "optimal" quantity of c-Src expression for FGF-induced proliferation. To determine if this was a general phenomenon for growth factor signaling pathways utilizing c-Src, responses to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and lysophosphatidic acid (LPA) were examined. As for FGF, responses to EGF were clearly inhibited when c-Src was absent or overexpressed. In contrast, varying levels of c-Src had little effect on responses to PDGF or LPA. The data show that mitogenic pathways activated by FGF-1 and EGF are regulated by c-Src protein levels and appear to differ significantly from those activated by PDGF and LPA.  相似文献   

10.
Environmental or occupational exposure to arsenic is associated with a greatly increased risk of skin, urinary bladder, and respiratory tract cancers in arseniasis-endemic areas throughout the world. Arsenic shares many properties of tumor promoters by affecting specific cell signal transduction pathways responsible for cell proliferation. The activation of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated protein kinase (ERK) pathway is important in mediating gene expression related to regulation of cellular growth. In the current studies, we demonstrate that arsenic activates EGFR and ERK in a human uroepithelial cell line. The EGFR phosphorylation by arsenic is ligand-independent and does not involve the major autophosphorylation site Tyr(1173). c-Src activity is also induced by arsenic and is a prerequisite for the EGFR and ERK activation. Consistent with these in vitro observations, exposure of mice to arsenic in drinking water, which has been found previously to be associated with AP-1 activation and epithelial proliferation, induces EGFR and ERK activation in the urinary bladder. This response is also accompanied with an increase in c-Src levels interacting with EGFR. These findings represent a potential pathway for mediating arsenic-induced phenotypic changes in the uroepithelium.  相似文献   

11.
12.
In many systems, the integration of converging regulatory signals that relay on G protein-coupled receptor (GPCR) activation into functional cellular pathways requires the involvement of receptor tyrosine kinase. In this report, we provide evidence that activation of GPCR by beta-adrenergic agonist leading to stimulation in gastric mucin secretion requires epidermal growth factor receptor (EGFR) participation. Using [(3)H]glucosamine-labeled gastric mucosal cells, we show that stimulatory effect of beta-adrenergic agonist, isoproterenol, on mucin secretion was inhibited by EGFR kinase inhibitor, PD153035, as well as wortmannin, a specific inhibitor of PI3K. Both inhibitors, moreover, blunted the mucin secretory responses to beta-adrenergic agonist-generated second messenger, cAMP as well as adenylate cyclase activator, forskolin. The gastric mucin secretory responses to isoproterenol, furthermore, were inhibited by PP2, a selective inhibitor of tyrosine kinase Src responsible for ligand-independent EGFR autophosphorylation, but not by ERK inhibitor, PD98059. The inhibition of ERK, moreover, did not cause attenuation in mucin secretion in response to cAMP and forskolin. The findings underline the role of EGFR as a convergence point in gastric mucin secretion triggered by beta-adrenergic GPCR activation, and demonstrate the requirement for Src kinase in EGFR transactivation.  相似文献   

13.
Grb2-associated binder-1 (Gab1) is a multisite docking protein containing a pleckstrin homology (PH) domain, multiple potential tyrosine phosphorylation sites, and several proline-rich sequences. Gab1 becomes tyrosine-phosphorylated in cells stimulated with growth factors, cytokines, and ligands for G protein-coupled receptors. A major Gab1-binding protein detected in cells treated with extracellular stimuli is the tyrosine phosphatase, SHP2. Although the role of SHP2-Gab1 interaction in cell signaling has not yet been characterized, SHP2 is known to mediate mitogen-activated protein (MAP) kinase activation induced by the epidermal growth factor (EGF). However, the mechanism by which the SHP2 phosphatase exerts a positive signaling role remains obscure. In this study, we prepared Gab1 mutants lacking the SHP2 binding site (Gab1Y627F), the phosphatidylinositol 3-kinase (PI3K) binding sites (Gab1DeltaPI3K), and the PH domain (Gab1DeltaPH). Expression of Gab1Y627F blocked the extracellular signal-regulated kinase-2 (ERK2) activation by lysophosphatidic acid (LPA) and EGF. Conversely, expression of the wild-type Gab1 in HEK293 cells augmented the LPA receptor Edg2-mediated ERK2 activation. Whereas the PH domain was required for Gab1 mediation of ERK2 activation by LPA, it was not essential for EGF-induced ERK2 activation. Expression of Gab1DeltaPI3K had no apparent effect on ERK2 activation by LPA and EGF in the cells that we have examined. These results establish a role for Gab1 in the LPA-induced MAP kinase pathway and clearly demonstrate that Gab1-SHP2 interaction is essential for ERK2 activation by LPA and EGF. These findings also suggest that the positive role of SHP2 in the MAP kinase pathway depends on its interaction with Gab1.  相似文献   

14.
Kim J  Ahn S  Guo R  Daaka Y 《Biochemistry》2003,42(10):2887-2894
The epidermal growth factor (EGF) receptor (EGFR) plays a central role in regulating cell proliferation, differentiation, and migration. Cellular responses to EGF are dependent upon the amount of EGFR present on the cell surface. Stimulation with EGF induces sequestration of the receptor from the plasma membrane and its subsequent downregulation. Recently, internalization of the EGFR was also shown to be required for mitogenic signaling via the activation of MAP kinases. Therefore, mechanisms regulating internalization of the EGFR represent an important facet for the control of cellular response. Here, we demonstrate that EGFR is removed from the cell surface not only following stimulation with EGF, but also in response to stimulation of G protein-coupled lysophosphatidic acid (LPA) and beta2 adrenergic (beta2AR) receptors. Using a FLAG epitope-tagged EGFR to quantitate receptor internalization, we show that incubation with EGF, LPA, or isoproterenol (ISO) causes the time-dependent loss of cell surface EGFR. Internalization of EGFR by these ligands involves the tyrosine kinase activity of the receptor itself and c-Src, as well as the GTPase activity of dynamin. Unexpectedly, we find that internalization of the EGFR by EGF is dependent upon Gbetagamma and beta-arrestin proteins; expression of minigenes encoding the carboxyl terminii of the G protein-coupled receptor kinase 2, or beta-arrestin1, attenuates LPA-, ISO-, and EGF-mediated internalization of EGFR. Thus, G protein-coupled receptors can control the function of the EGFR by regulating its endocytosis.  相似文献   

15.
16.
The stomach hormone ghrelin is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Systemic administration of ghrelin will cause elevations in growth hormone (GH) secretion, food intake, adiposity, and body growth. Ghrelin also affects insulin secretion, gastric acid secretion, and gastric motility. Several reports indicate that repeated or continuous activation of GHS-R by exogenous GHSs or ghrelin results in a diminished GH secretory response. The purpose of this study was to examine the extent to which the acute stimulation of food intake by exogenous ghrelin is altered by chronic hyperghrelinemia in transgenic mice that overexpress the human ghrelin gene. The present findings show that the orexigenic action of exogenous ghrelin is not diminished by a chronic hyperghrelinemia and indicate that the food ingestive pathway of the GHS-R is not susceptible to desensitization. In contrast, the epididymal fat pad growth response, like the GH response, to exogenous ghrelin is blunted in ghrelin transgenic mice with chronic hyperghrelinemia.  相似文献   

17.
Ghrelin, a newly identified gastric peptide, is known for its potent activity in growth hormone release and appetite. Our recent study showed that ghrelin could stimulate protein kinase C-mediated activation of nuclear factor-kappaB (NF-kappaB) and interleukin-8 secretion in human colonic epithelial cells transfected with a functional ghrelin receptor. In the present study, the effect of ghrelin stimulation on cyclooxygenese-2 expression and prostaglandin E2 production was examined. The data indicate that ghrelin significantly increased the levels of cyclooxygenase-2 (COX-2) protein as well as its promoter activity, which leaded to profound increase in prostaglandin E2 secretion. In order to examine the involvement of NF-kappaB and cAMP responsive element-binding protein (CREB) in this response, the NF-kappaB inhibitory protein IkappaBalpha or a dominant negative mutant of CREB was co-transfected into cells and the data show that transfection of either IkappaBalpha or DN-CREB significantly attenuated ghrelin-induced COX-2 expression. Moreover ghrelin stimulated phosphorylation of CREB, which was mediated primarily via protein kinase Cdelta activation. Furthermore, inhibition of PKCdelta function significantly attenuated ghrelin-induced COX-2 expression. In addition, ghrelin stimulates phosphorylation of PKCdelta. Together, these results indicate that in addition to NF-kappaB, protein kinase Cdelta-mediated CREB activation plays an important role in the cellular responses of ghrelin.  相似文献   

18.
19.
20.
Extracellular signal-regulated protein kinases (ERKs) are important in many cellular functions. We and others have previously reported that prolonged exposure of gastric parietal cells to epidermal growth factor (EGF) enhanced gastric acid secretion stimulated by secretagogues via ERKs. In this study, we examined whether ERKs regulated H(+),K(+)-ATPase alpha-subunit gene expression using a gastric cancer cell line, AGS. EGF induced ERK activity time- and dose-dependently with a maximal effect observed at 10 min and 10 nM, respectively. The MEK inhibitors, U0126 and PD-98059, dose-dependently inhibited the ERK activity stimulated by EGF. To test H(+),K(+)-ATPase alpha-subunit gene expression, we transfected AGS cells with a plasmid containing a canine H(+),K(+)-ATPase alpha-subunit gene promoter fused to a luciferase reporter gene. EGF induced luciferase activity in transfected cells; this effect was inhibited by the MEK inhibitors, suggesting that EGF-induced gene expression involved the ERK pathway. When AGS cells were transfected with the reporter plasmids in conjunction with an expression vector encoding constitutively active MEK1, luciferase activity was strongly enhanced; this effect was attenuated by the MEK inhibitors or by an additional cotransfection of dominant negative MEK1. Taken together, our results led us to conclude that the ERK pathway may mediate H(+),K(+)-ATPase alpha-subunit gene expression, contributing to gastric acid secretion in parietal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号