首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short- and long-range repulsion by the Drosophila Unc5 netrin receptor.   总被引:11,自引:0,他引:11  
K Keleman  B J Dickson 《Neuron》2001,32(4):605-617
Netrins are bifunctional guidance molecules, attracting some axons and repelling others. They act through receptors of the DCC and UNC5 families. DCC receptors have been implicated in both attraction and repulsion by Netrins. UNC5 receptors are required only for repulsion. In Drosophila, Netrins are expressed by midline cells of the CNS and by specific muscles in the periphery. They attract commissural and motor axons expressing the DCC family receptor Frazzled. Here we report the identification of the Drosophila Unc5 receptor, and show that it is a repulsive Netrin receptor likely to contribute to motor axon guidance. Ectopic expression of Unc5 on CNS axons can elicit either short- or long-range repulsion from the midline. Both short- and long-range repulsion require Netrin function, but only long-range repulsion requires Frazzled.  相似文献   

2.
3.
Developing axons are attracted to the CNS midline by Netrin proteins and other as yet unidentified signals. Netrin signals are transduced in part by Frazzled (Fra)/DCC receptors. Genetic analysis in Drosophila indicates that additional unidentified receptors are needed to mediate the attractive response to Netrin. Analysis of Bolwig's nerve reveals that Netrin mutants have a similar phenotype to Down Syndrome Cell Adhesion Molecule (Dscam) mutants. Netrin and Dscam mutants display dose sensitive interactions, suggesting that Dscam could act as a Netrin receptor. We show using cell overlay assays that Netrin binds to fly and vertebrate Dscam, and that Dscam binds Netrin with the same affinity as DCC. At the CNS midline, we find that Dscam and its paralog Dscam3 act redundantly to promote midline crossing. Simultaneous genetic knockout of the two Dscam genes and the Netrin receptor fra produces a midline crossing defect that is stronger than the removal of Netrin proteins, suggesting that Dscam proteins also function in a pathway parallel to Netrins. Additionally, overexpression of Dscam in axons that do not normally cross the midline is able to induce ectopic midline crossing, consistent with an attractive receptor function. Our results support the model that Dscam proteins function as attractive receptors for Netrin and also act in parallel to Frazzled/DCC. Furthermore, the results suggest that Dscam proteins have the ability to respond to multiple ligands and act as receptors for an unidentified midline attractive cue. These functions in axon guidance have implications for the pathogenesis of Down Syndrome.  相似文献   

4.
Although many similarities in arthropod central nervous systems (CNS) development exist, differences in midline cell formation and ventral nerve cord axonogenesis have been noted in arthropods. It is possible that changes in the expression of axon guidance molecules such as Netrin, which functions during commissural axon guidance in Drosophila and many other organisms, may parallel these differences. In this investigation, we analyze this hypothesis by examining Netrin accumulation during development of the brine shrimp Artemia franciscana, a branchiopod crustacean. An Artemia franciscana netrin (afrnet) orthologue was cloned. An antibody to the afrNet protein was generated and used to examine the pattern of afrNet accumulation during Artemia development. Despite differences between Drosophila and Artemia nerve cord development, examination of afrNet accumulation suggests that this protein functions to regulate commissure formation during Artemia CNS development. However, detection of afrNet at the midline and on commissural axons occurs at a relatively later time point in Artemia as compared with Drosophila. Detection of afrNet in a subset of midline cells that closely resemble Netrin-expressing cells at the Drosophila midline provides evidence for homology of midline cells in arthropods. Expression of Netrins in many other tissues is comparable, suggesting that Netrin proteins may play many conserved roles during arthropod development.  相似文献   

5.
One of the challenges to understanding nervous system development has been to establish how a fairly limited number of axon guidance cues can set up the patterning of very complex nervous systems. Studies on organisms with relatively simple nervous systems such as Drosophila melanogaster and C. elegans have provided many insights into axon guidance mechanisms. The axons of many neurons migrate along both the dorsal-ventral (DV) and the anterior-posterior (AP) axes at different phases of development, and in addition they may also cross the midline. Axon migration in the dorsal-ventral (DV) direction is mainly controlled by Netrins with their receptors; UNC-40/DCC and UNC-5, and the Slits with their receptors; Robo/SAX-3. Axon guidance in the anterior-posterior (AP) axis is mainly controlled by Wnts with their receptors; the Frizzleds/Fz. An individual axon may be subjected to opposing attractive and repulsive forces coming from opposite sides in the same axis but there may also be opposing cues in the other axis of migration. All the information from the cues has to be integrated within the growth cone at the leading edge of the migrating axon to elicit a response. Recent studies have provided insight into how this is achieved.Evidence suggests that the axis of axon migration is determined by the manner in which Netrin, Slit and Wnt receptors are polarized (localized) within the neuron prior to axon outgrowth. The same molecules are involved in both axon outgrowth and axon guidance, for at least some neurons in C. elegans, whether the cue is the attractive cue UNC-6/Netrin working though UNC-40/DCC or the repulsive cue SLT-1/Slit working though the receptor SAX-3/Robo (Adler et al., 2006, Chang et al., 2006, Quinn et al., 2006, 2008). The molecules involved in cell signaling in this case are polarized within the cell body of the neuron before process outgrowth and direct the axon outgrowth. Expression of the Netrin receptor UNC-40/DCC or the Slit receptor SAX-3/Robo in axons that normally migrate in the AP direction causes neuronal polarity reversal in a Netrin and Slit independent manner (Levy-Strumpf and Culotti 2007, Watari-Goshima et al., 2007). Localization of the receptors in this case is caused by the kinesin-related VAB-8L which appears to govern the site of axon outgrowth in these neurons by causing receptor localization. Therefore, asymmetric localization of axon guidance receptors is followed by axon outgrowth in vivo using the receptor's normal cue, either attractive, repulsive or unknown cues.  相似文献   

6.
Netrin is an evolutionarily conserved axon guidance molecule that has both axonal attraction and repulsion activities. In Caenorhabditis elegans, Netrin/UNC-6 is secreted by ventral cells, attracting some axons ventrally and repelling some axons, which extend dorsally. One axon guided by UNC-6 is that of the HSN neuron. The axon guidance process for HSN neurons is complex, consisting of ventral growth, dorsal growth, branching, second ventral growth, fasciculation with ventral nerve cords, and then anterior growth. The vulval precursor cells (VPC) and the PVP and PVQ neurons are required for the HSN axon guidance; however, the molecular mechanisms involved are completely unknown. In this study, we found that the VPC strongly expressed UNC-6 during HSN axon growth. Silencing of UNC-6 expression in only the VPC, using a novel tissue-specific RNAi technique, resulted in abnormal HSN axon guidance. The expression of Netrin/UNC-6 by only the VPC in unc-6 null mutants partially rescued the HSN ventral axon guidance. Furthermore, the expression of Netrin/UNC-6 by the VPC and the ventral nerve cord (VNC) in unc-6 null mutants restored the complex HSN axon guidance. These results suggest that UNC-6 expressed by the VPC and the VNC cooperatively regulates the complex HSN axon guidance.  相似文献   

7.
The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions.  相似文献   

8.
The Alzheimer's disease-linked gene presenilin is required for intramembrane proteolysis of amyloid-β precursor protein, contributing to the pathogenesis of neurodegeneration that is characterized by loss of neuronal connections, but the role of Presenilin in establishing neuronal connections is less clear. Through a forward genetic screen in mice for recessive genes affecting motor neurons, we identified the Columbus allele, which disrupts motor axon projections from the spinal cord. We mapped this mutation to the Presenilin-1 gene. Motor neurons and commissural interneurons in Columbus mutants lacking Presenilin-1 acquire an inappropriate attraction to Netrin produced by the floor plate because of an accumulation of DCC receptor fragments within the membrane that are insensitive to Slit/Robo silencing. Our findings reveal that Presenilin-dependent DCC receptor processing coordinates the interplay between Netrin/DCC and Slit/Robo signaling. Thus, Presenilin is a key neural circuit builder that gates the spatiotemporal pattern of guidance signaling, thereby ensuring neural projections occur with high fidelity.  相似文献   

9.
The development of axon tracts in the early vertebrate brain is controlled by combinations of soluble, membrane-bound and extracellular matrix molecules. How these multiple and sometimes conflicting guidance cues are integrated in order to establish stereotypical pathways remains to be determined. We show here that when interactions between the chemoattractive signal Netrin1a and its receptor Dcc are suppressed using a loss-of-function approach, a novel axon trajectory emerges in the dorsal diencephalon. Axons arising from a subpopulation of telencephalic neurons failed to project rostrally into the anterior commissure in the absence of either Netrin1a or Dcc. Instead these axons inappropriately exited the telencephalon and ectopically coursed caudally into virgin neuroepithelium. This response was highly specific since loss-of-function of Netrin1b, a paralogue of Netrin1a, generated a distinct phenotype in the rostral brain. These results show that a subpopulation of telencephalic neurons, when freed from long-range chemoattraction mediated by Netrin1a-Dcc interactions, follow alternative instructive cues that lead to creation of an ectopic axon bundle in the diencephalon. This work provides insight into how integration of multiple guidance signals defines the initial scaffold of axon tracts in the embryonic vertebrate forebrain.  相似文献   

10.
Netrins promote axon outgrowth and turning through DCC/UNC-40 receptors. To characterize Netrin signaling, we generated a gain-of-function UNC-40 molecule, MYR::UNC-40. MYR::UNC-40 causes axon guidance defects, excess axon branching, and excessive axon and cell body outgrowth. These defects are suppressed by loss-of-function mutations in ced-10 (a Rac GTPase), unc-34 (an Enabled homolog), and unc-115 (a putative actin binding protein). ced-10, unc-34, and unc-115 also function in endogenous unc-40 signaling. Our results indicate that Enabled functions in axonal attraction as well as axon repulsion. UNC-40 has two conserved cytoplasmic motifs that mediate distinct downstream pathways: CED-10, UNC-115, and the UNC-40 P2 motif act in one pathway, and UNC-34 and the UNC-40 P1 motif act in the other. Thus, UNC-40 might act as a scaffold to deliver several independent signals to the actin cytoskeleton.  相似文献   

11.
The conserved DCC ligand-receptor pair Netrin and Frazzled (Fra) has a well-established role in axon guidance. However, the specific sequence motifs required for orchestrating downstream signaling events are not well understood. Evidence from vertebrates suggests that P3 is important for transducing Netrin-mediated turning and outgrowth, whereas in C. elegans it was shown that the P1 and P2 conserved sequence motifs are required for a gain-of-function outgrowth response. Here, we demonstrate that Drosophila fra mutant embryos exhibit guidance defects in a specific subset of commissural axons and these defects can be rescued cell-autonomously by expressing wild-type Fra exclusively in these neurons. Furthermore, structure-function studies indicate that the conserved P3 motif (but not P1 or P2) is required for growth cone attraction at the Drosophila midline. Surprisingly, in contrast to vertebrate DCC, P3 does not mediate receptor self-association, and self-association is not sufficient to promote Fra-dependent attraction. We also show that in contrast to previous findings, the cytoplasmic domain of Fra is not required for axonal localization and that neuronal expression of a truncated Fra receptor lacking the entire cytoplasmic domain (Fra delta C) results in dose-dependent defects in commissural axon guidance. These findings represent the first systematic dissection of the cytoplasmic domains required for Fra-mediated axon attraction in the context of full-length receptors in an intact organism and provide important insights into attractive axon guidance at the midline.  相似文献   

12.
Robo receptors interact with ligands of the Slit family. The nematode C. elegans has one Robo receptor (SAX-3) and one Slit protein (SLT-1), which direct ventral axon guidance and guidance at the midline. In larvae, slt-1 expression in dorsal muscles repels axons to promote ventral guidance. SLT-1 acts through the SAX-3 receptor, in parallel with the ventral attractant UNC-6 (Netrin). Removing both UNC-6 and SLT-1 eliminates all ventral guidance information for some axons, revealing an underlying longitudinal guidance pathway. In the embryo, slt-1 is expressed at high levels in anterior epidermis. Embryonic expression of SLT-1 provides anterior-posterior guidance information to migrating CAN neurons. Surprisingly, slt-1 mutants do not exhibit the nerve ring and epithelial defects of sax-3 mutants, suggesting that SAX-3 has both Slit-dependent and Slit-independent functions in development.  相似文献   

13.
Retinal axons in Drosophila make precise topographic connections with their target cells in the optic lobe. Here we investigate the role of the Netrins and their receptor Frazzled in the establishment of retinal projections. We find that the Netrins, although expressed in the target, are not required for retinal projections. Surprisingly, Frazzled, found on both retinal fibers and target cells, is required in the target for attracting retinal fibers, while playing at best a redundant role in the retinal fibers themselves; this finding demonstrates that target attraction is necessary for topographic map formation. Finally, we show that Frazzled is not required for the differentiation of cells in the target. Our data suggest that Frazzled does not function as a Netrin receptor in attracting retinal fibers to the target; nor does it seem to act as a homotypic cell adhesion molecule. We favor the possibility that Frazzled in the target interacts with a component on the surface of retinal fibers, possibly another Netrin receptor.  相似文献   

14.
A shared feature of many neural circuits is their organization into synaptic layers. However, the mechanisms that direct neurites to distinct layers remain poorly understood. We identified a central role for Netrins and their receptor Frazzled in mediating layer-specific axon targeting in the Drosophila visual system. Frazzled is expressed and cell autonomously required in R8 photoreceptors for directing their axons to the medulla-neuropil layer M3. Netrin-B is specifically localized in this layer owing to axonal release by lamina neurons L3 and capture by target neuron-associated Frazzled. Ligand expression in L3 is sufficient to rescue R8 axon-targeting defects of Netrin mutants. R8 axons target normally despite replacement of diffusible Netrin-B by membrane-tethered ligands. Finally, Netrin localization is instructive because expression in ectopic layers can retarget R8 axons. We propose that provision of localized chemoattractants by intermediate target neurons represents a highly precise strategy to direct axons to a positionally defined layer.  相似文献   

15.
Establishment of limb innervation by motor neurons involves a series of hierarchical axon guidance decisions by which motor-neuron subtypes evaluate peripheral guidance cues and choose their axonal trajectory. Earlier work indicated that the pathway into the dorsal limb by lateral motor column (LMC[l]) axons requires the EphA4 receptor, which mediates repulsion elicited by ephrinAs expressed in ventral limb mesoderm. Here, we implicate glial-cell-line-derived neurotrophic factor (GDNF) and its receptor, Ret, in the same guidance decision. In Gdnf or Ret mutant mice, LMC(l) axons follow an aberrant ventral trajectory away from dorsal territory enriched in GDNF, showing that the GDNF/Ret system functions as an instructive guidance signal for motor axons. This phenotype is enhanced in mutant mice lacking Ret and EphA4. Thus, Ret and EphA4 signals cooperate to enforce the precision of the same binary choice in motor-axon guidance.  相似文献   

16.
Gao J  Zhang C  Yang B  Sun L  Zhang C  Westerfield M  Peng G 《PloS one》2012,7(5):e36516
The guidance receptor DCC (deleted in colorectal cancer) ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt) neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.  相似文献   

17.
Over recent years the secreted guidance cue, netrin-1, and its receptor, DCC, have been shown to be an essential guidance system driving axon pathfinding within the developing vertebrate central nervous system (CNS). Mice lacking DCC exhibit severe defects in commissural axon extension towards the floor plate demonstrating that the DCC-netrin guidance system is largely responsible for directing axonal projections toward the ventral midline in the developing spinal cord (Fazeli et al., Nature 386 (1997) 796). In addition, these mutants lack several major commissures within the forebrain, including the corpus callosum and the hippocampal commissure. In contrast to the CNS, the role of the DCC guidance receptor in the development of the mammalian peripheral and enteric nervous systems (PNS and ENS) has not been investigated. Here we demonstrate using immunohistochemical analysis that the DCC receptor is present in the developing mouse PNS where it is found on spinal, segmental, and sciatic nerves, and in developing sensory ganglia and their associated axonal projections. In addition, DCC is present in the ENS throughout the early developmental phase.  相似文献   

18.
Netrins are well known for their function as long-range chemotropic guidance cues, in particular in the ventral midline of vertebrates and invertebrates. Over the past years, publications are accumulating that support an additional short-range function for Netrins in diverse developmental processes such as axonal pathfinding and cell adhesion. We describe here the formation of the axonal scaffold in the spiders Cupiennius salei and Achaearanea tepidariorum and show that axonal tract formation seems to follow the same sequence as in insects and crustaceans in both species. First, segmental neuropiles are established which then become connected by the longitudinal fascicles. Interestingly, the commissures are established at the same time as the longitudinal tracts despite the large gap between the corresponding hemi-neuromeres which results from the lateral movement of the germband halves during spider embryogenesis. We show that Netrin has a conserved function in the ventral midline in commissural axon guidance. This function is retained by an adaptation of the expression pattern to the specific morphology of the spider embryo. Furthermore, we demonstrate a novel function of netrin in the formation of glial sheath cells that has an impact on neural precursor differentiation. Loss of Netrin function leads to the absence of glial sheath cells which in turn results in premature segregation of neural precursors and overexpression of the early motor- and interneuronal marker islet. We suggest that Netrin is required in the differentiated sheath cells for establishing and maintaining the interaction between NPGs and sheath cells. This short-range adhesive interaction ensures that the neural precursors maintain their epithelial character and remain attached to the NPGs. Both the conserved and novel functions of Netrin seem to be required for the proper formation of the axonal scaffold.  相似文献   

19.
Netrins are bifunctional: they attract some axons and repel others. Netrin receptors of the Deleted in Colorectal Cancer (DCC) family are implicated in attraction and those of the UNC5 family in repulsion, but genetic evidence also suggests involvement of the DCC protein UNC-40 in some cases of repulsion. To test whether these proteins form a receptor complex for repulsion, we studied the attractive responses of Xenopus spinal axons to netrin-1, which are mediated by DCC. We show that attraction is converted to repulsion by expression of UNC5 proteins in these cells, that this repulsion requires DCC function, that the UNC5 cytoplasmic domain is sufficient to effect the conversion, and that repulsion can be initiated by netrin-1 binding to either UNC5 or DCC. The isolated cytoplasmic domains of DCC and UNC5 proteins interact directly, but this interaction is repressed in the context of the full-length proteins. We provide evidence that netrin-1 triggers the formation of a receptor complex of DCC and UNC5 proteins and simultaneously derepresses the interaction between their cytoplasmic domains, thereby converting DCC-mediated attraction to UNC5/DCC-mediated repulsion.  相似文献   

20.
Guidance of vascular and neural network formation   总被引:15,自引:0,他引:15  
Blood vessels and nerves are structurally similar complex branched systems. Their guidance must be exquisitely regulated to ensure proper wiring of both networks. Recent results showed that specialized endothelial cells, resembling axonal growth cones, form the tips of growing capillaries. These endothelial tip cells guide outgrowing capillaries in response to gradients of extracellular matrix-bound vascular endothelial growth factor. Several axon guidance molecules, including Semaphorins, Netrins, Ephrins and Slits, have also been implicated in vessel pathfinding and network formation. In particular, Semaphorin3E and its receptor plexinD1 in addition to the Netrin receptor UNC5B have recently been shown to direct endothelial tip cell navigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号