共查询到20条相似文献,搜索用时 0 毫秒
1.
The temperature dependence of the humidity-sensitive spacing, d, related to the lateral packing of collagen molecules was measured for fully hydrated collagen. In the vicinity of 0°C, a sudden change in d was observed, which was reversible with temperature. In the diffraction profile, below 0°C, a set of diffraction peaks identified with the hexagonal crystalline form of ice was observed. With the reduction in water content, the intensity of the set of diffraction peaks decreased and was found to be zero at a water content of 0.38 g/g collagen. These results were considered to be caused by the frozen water in collagen fibril below 0°C. According to the water content dependence of d, it was considered that up to a certain water content water absorbed would be stowed in the intermolecular space of collagen and above that water content water molecules would aggregate to make pools, i. e., extrafibrillar spaces. The unfreezable bound water was considered to be located in the intermolecular space of collagen. Size of the extrafibrillar space, determined from the intensity analysis of a smallangle x-ray scattering pattern, corroborates the speculation that the water showed in the extrafibrillar space is freezable and free. The formation of the hexagonal crystalline form of ice in the extrafibrillar space was considered to cause the sudden change in d at 0°C. 相似文献
2.
Well-defined X-ray diffraction patterns have been recorded from erythrocyte membranes in the frozen state. At ?40°C, lamellar periodicities range from 19 to 95 nm depending on the glycerol content (0–40%, respectively). Freeze-fracture electron micrographs of samples frozen in two stages to approximate to the diffraction conditions show ice formation external to membrane stacks. The membrane stacks have periodicities of the same order of magnitude as those obtained by X-ray diffraction. 相似文献
3.
Axial electron density of human scleral collagen. Location of proteoglycans by x-ray diffraction.
下载免费PDF全文

The low angle meridional x-ray diffraction pattern from fresh human sclera was analyzed to ascertain if collagen-bound proteoglycans affect the axially-projected electron density distribution to the same extent as appears to occur in the cornea. The results showed that, unlike cornea, the electron density of the sclera is similar to that seen in rat tail tendon collagen. The proteoglycans were specifically stained using either Cuprolinic blue or Cupromeronic blue, both under critical electrolyte conditions. The tissue was then examined by electron microscopy and by low angle x-ray diffraction. The electron-optical observations suggested that proteoglycans associate with collagen near the d/e staining bands in the gap zone. A difference Fourier analysis from the x-ray results confirmed that these observations were not e.m. preparative artefacts and allowed a quantitative estimate to be made of the axial extent of the proteglycans in the wet tissue. 相似文献
4.
Two piezoelectric constants (polarization per unit stress, d=d'-id', and polarization per unit strain, e=e'-ie'), the elastic constant, and dielectric constant are determined for oriented collagen at different hydration levels at 10 Hz from -150 to 50 degrees C. With no hydration (approximately 0% H2O), d' increases slightly with higher temperatures, while e' decreases slightly. Near 11 wt% H2O, both d' and e' increase then decrease around 0 degrees C, and is probably caused by an increase of the dielectric constant and the ionic conductivity in the nonpiezoelectric phase. Hydration greater than 25 wt%, d' and e' decrease above -50 degrees C which is considered to be due to a greater ionic conductivity surrounding the piezoelectric phase. 相似文献
5.
J. Raul Grigera Fernando Vericat Klaas Hallenga Herman J. C. Berendsen 《Biopolymers》1979,18(1):35-45
Dielectric measurements have been carried out on partially hydrated collagen in the frequency ranges 100 kHz–5 MHz, 100 MHz–1 GHz, and 8–23 GHz. In the low-frequency range, a dispersion was observed around 100 kHz which results from inhomogeneous conductivity of the samples. A dielectric relaxation was observed aroud 0.3 GHz using time-domain-spectroscopy techniques. This relaxation can be considered to originate from mobile side chains. Microwave measurements indicate that the water relaxation may extend into the 10-GHz region. An apparent discrepancy between the main water relaxation time and the average rotational correlation time of water as measured by nmr line widths was resolved by the assumption that a fraction of the water molecules is bound to the collagen with residence times on the order of 10?6 sec, whereas the remainder of the water is only weakly bound and exhibits rotational rates on the order of 10?10 sec. 相似文献
6.
V P Tomaselli 《Biopolymers》1974,13(12):2423-2434
The dc conductivity of hydrated bovine Achilles' tendon collagen has been determined as a function of hydration over a limited temperature range. At ambient temperature the conductivity changes from 10?15 (Ω cm)?1 in the dry state to about 10?8 (Ω cm)?1 at ~24% water content by weight. For all temperatures the conductivity increases exponentially with hydration obeying σ(h) = A exp (βh), where h is a measure of the hydration, A is independent of temperature, and the parameter β ~ T?1. It is shown that the data may be described by an impurity-type mechanism in which the effective activation energy for the process is dependent on temperature and hydration. Conduction is assumed to be electronic with the impurity (water) acting as a donor. In the solid state the effect of water on the conductivity is reversible indicating the absence of chemical alteration of the hydrated collagen. 相似文献
7.
The effect of water on the low-frequency (102-105 Hz) complex permittivitv of native, sold-state collagen has been investigated experimentally. Measurements at ambient temperature show that dry collagen exhibits essentially no frequency or temperature dependence. As water is absorbed, both dielectric constant and loss factor increase simultaneously and rise sharply upward at a hydration level which may be associated with the completion of the primary absorption layer as determined from independent water absorption studies. The behaviour is qualitatively identical to that observed for other proteins and related materials. Temperature-dependent measurements made under vacuum conditions in the range ?196°C to +100°C are characteristic of the dielectric properties of the water in the sample. Dehydration produced by successive temperature recycling to the maximum temperature effectively eliminates any temperature or frequency dependence. A maximum in the temperature-dependent curves is found at about +40°C and is explained as the superposition of two processes: (1) the transition of water molecules from bound to free states, and (2) the difffusion of water molecules out of the system. The dielectric constant of dry collagen, after desorption at ambient temperature, is about 4.5. Desorption at elevated temperatures reduced the room temperature value to about 2.3 and the liquid nitrogen temperature value to a number indistinguishable from the optical value of n2 = 2.16. 相似文献
8.
G H Bardelmeyer 《Biopolymers》1973,12(10):2289-2302
The electrical conductivity of bovine Achilles tendon with various amounts of adsorbed water was measuredas a function of temperature. The conduction appeared to be fully determined by the water of hydration. The current is probably primarily carried by protons at water contents up to 45% and by small ions at water contents beyond 65%. In both ranges of water content, a linear relation between activation energy and water and content was found. As to the lower range, this is explained by the action of Coulombic forces during the separation of proton–hydroxyl ion pairs. In two regions of water content a linear relation between the logarithm of the pre-exponential factor and the activation energy was found. There are, however, indications that at certain water contents the dissociation constant of the adsorbed water is several orders of magnitude higher than in liquid water. 相似文献
9.
10.
The wide angle X-ray diffraction pattern of air-dried lens capsule collagen under tension is the same as the tendon collagen diffraction pattern with regard to the main reflections, and indicates that lens capsule collagen has the characteristic three-stranded helical structure with an axial repeat of 0.29 nm as tendon collagen. The low angle X-ray diffraction pattern shows several weak diffraction maxima corresponding to the meridional reflections of capsule collagen which show orders of 63.0 nm periodicity. This is an evidence of quarter staggered molecular assembly typical of tendon collagen even if less ordered. The results are consistent with the existence in lens capsule collagen of clearly defined molecular units, which can be oriented by stress and are packed in a poor-ordered fibrillar assembly. 相似文献
11.
12.
The crystal and molecular structure of a dextran hydrate has been determined through combined electron and X-ray diffraction analysis, aided by stereochemical model refinement. A total of 65 hk0 electron diffraction intensities were measured on frozen single crystals held at the temperature of liquid nitrogen, to a resolution limit of 1.6 A. The X-ray intensities were measured from powder patterns recorded from collections of the single crystals. The structure crystallizes in a monoclinic unit cell with parameters a = 25.71 A, b = 10.21 A, c (chain axis) = 7.76 A and beta = 91.3 degrees. The space group is P2(1) with b axis unique. The unit cell contains six chains and eight water molecules, with three chains of the same polarity and four water molecules constituting the asymmetric unit. Along the chain direction the asymmetric unit is a dimer residue; however, the individual glucopyranose residues are very nearly related by a molecular 2-fold screw axis. The conformation of the chain is very similar to that in the anhydrous structure, but the chain packing differs in the two structures in that the rotational positions of the chains about the helix axes (the chain setting angles) are considerably different. The chains still pack in the form of sheets that are separated by water molecules. The difference in the chain setting angles between the anhydrous and hydrate structures corresponds to the angle between like unit cell axes observed in the diffraction diagrams recorded from hybrid crystals containing both polymorphs. Despite some beam damage effects, the structure was determined to a satisfactory degree of agreement, with the residuals R'(electron diffraction) = 0.258 and R(X-ray) = 0.127. 相似文献
13.
14.
15.
Electron microscopic analysis can be used to determine the three-dimensional structures of macromolecules at resolutions ranging between 3 and 30 A. It differs from nuclear magnetic resonance spectroscopy or x-ray crystallography in that it allows an object's Coulomb potential functions to be determined directly from images and can be used to study relatively complex macromolecular assemblies in a crystalline or noncrystalline state. Electron imaging already has provided valuable structural information about various biological systems, including membrane proteins, protein-nucleic acid complexes, contractile and motile protein assemblies, viruses, and transport complexes for ions or macromolecules. This article, organized as a series of lectures, presents the biophysical principles of three-dimensional analysis of objects possessing different symmetries. 相似文献
16.
The X-ray diffraction of fibers reconstituted from purified rat tail tendon collagen has been compared with that of native rat tail tendon. The axial structure is very similar in the two specimens, while the ordered lateral array found in the native state is only poorly reproduced in the reconstituted fiber. Thus, the axial order is determined by the collagen molecules alone, while the native lateral packing may depend, in part at least, on other tissue components. 相似文献
17.
Small angle X-ray diffraction (SAXD) was used to locate mucopolysaccharides (MPS) at regular intervals along the collagen axis under physiological conditions. Ruthenium red was used to stain the MPS specifically. The difference in electron density between ruthenium red-stained and unstained moist native rat tail tendon should correspond to the position of the MPS. This difference was calculated from the SAXD intensity data by using difference Fourier transform calculations. Phases calculated independently from the amino acid sequence of collagen by two laboratories were used in this calculation, and the results were compared. At least four to seven bands of MPS per 660 A were found at regular intervals along the collagen axis. Some of these bands match in position to the cross-striations observed by freeze-etching. Electron micrographs of ruthenium red-stained native fibrils also showed bands close in position to the ones calculated. 相似文献
18.
Electron images can be used to provide amplitudes and phases for the structural determination of biological specimens. Radiation damage limits the amount of structural information retrievable by computer processing. A 400-kV electron microscope was used to investigate radiation damage effects on frozen, hydrated actin bundles kept at -168 degrees C. The quality of phases within and among images in a damage series was evaluated quantitatively out to 16 A resolution. It was found that the phases of structure factors with good signal-to-noise ratio (IQ less than or equal to 4) can be reliably retrieved from images taken at a cumulative dose of at least 25 electrons/A2. 相似文献
19.
Biological applications of electron diffraction 总被引:1,自引:0,他引:1
20.
Rodin VV 《Biofizika》2005,50(2):223-230
Collagen samples from dog-fish egg case at different water content were studied by the 1H NMR relaxation method. The dependences of the proton spin-lattice and spin-spin relaxation rates on the concentration of water in hydrated native collagen were measured. The fractions of water protons of different mobility and their corresponding spin-spin and spin-lattice relaxation rates were determined in a multi-phase model of water protons in natural biopolymer-water systems. The correlation times were calculated as the characteristics of molecular motion in hydrated collagens with different content of absorbed water. The results obtained were compared with literature data of pulse NMR studies of molecular mobility in other collagen fibers. 相似文献