首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a model of water flux and throughfall concentrations of K+ and NH 4 + in a subalpine balsam fir forest. The model is based on a multi-layer submodel of hydrologic flow. Cloud water deposition and evaporation are incorporated as separate submodels. Chemical exchange is parameterized with diffusion resistances and internal foliar concentrations determined from leaching experiments on isolated canopy components. The model is tested against within-storm throughfall measurements and found to agree reasonably well in most instances. Some specific departures from observed data are noted, of which some can be explained. Differences between observed and modeled concentrations of K+ early in the storm events suggest that pre-storm conditions, which were not modeled, are important in controlling the chemical exchange.Responses of throughfall chemistry to changes in rain rate, rain concentration, and stand surface area index (SAI) were investigated by simulation with the model. Increasing rain rates increased leaching of K+ and uptake of NH 4 + . Increasing concentrations of K+ in rain decreased slightly the amount of K+ leached, but increasing concentration of NH 4 + in rain increased NH 4 + uptake proportionately. Increasing canopy SAI increased the leaching of K+ and the uptake of NH 4 + , with the pattern of the increase dependent on rain rate.  相似文献   

2.
A kinetic model accounting for all salient features of the K+ channel of the squid giant axon, including the rising phase of the ON gating charge and the Cole-Moore effect, is provided. Upon accounting for a significant feature distinguishing K+, Na+ and Ca2 + channels from channel-forming peptides modeled in our previous 2016 BBA paper, the nucleation-and-growth kinetic model developed therein is extended to simulate ON ionic and gating currents of the K+ channel of the squid giant axon at different depolarization potentials by the use of only two free parameters. K+ channel opening is considered to proceed by progressive aggregation of single subunits, while they are moving their gating charge outward under depolarizing conditions within their tetrameric structure; K+ channel closing proceeds in the opposite direction, by repolarization-induced disaggregation of subunits, accompanied by inward movement of their gating charge.  相似文献   

3.
Human T-cell lymphotropic virus type I (HTLV-I) infection in humans causes a chronic infection of CD4+ T cells, and is associated with various disease outcomes, among them with the development of adult T-cell leukemia (ATL). The T-cell dynamics after HTLV-I infection can be described in a mathematical model with coupled differential equations. The infection process is modeled assuming cell-to-cell infection of CD4+ T cells. The model allows for CD4+ T cell subsets of susceptible, latently infected and actively infected cells as well as for leukemia cells. Latently infected T cells may harbor the virus for several years until they become activated and able to infect susceptible T cells. Uncontrolled proliferation of CD4+ T cells with monoclonal DNA-integration of HTLV-I results in the development of ATL. The model describes basic features that characterize HTLV-I infection; the chronic infection of CD4+ T cells, the increasing number of abnormal cells and the possible progression to ATL.  相似文献   

4.
The transport mechanism of Na ions within the nerve cell was studied by measuring the radioactivity distribution profile of22Na that had been intracellularly injected into the giant axon. Specifically, we tested whether or not the movement of Na ions is coupled with the process of “fast axonal transport.” Results of our measurements indicate that the intracellular transport of Na+ and the fast axonal transport are two independent processes. Very few Na ions are irreversibly sequestered into the axoplasmic vesicles involved in axonal transport. The movement of Na+ inside the axon can be modeled by a one-dimension diffusion. The effective diffusion coefficient of the intracellular Na+ was determined in this study.  相似文献   

5.
Passive H+/OH permeability across epithelial cell membranes is rapid and leads to partial dissipation of H+/OH gradients produced by H+ pumps and ion gradient-coupled H+/OH transporters. A heterogeneous set of H+/OH transport mechanisms exist in biological membranes: lipid solubility/diffusion, protein-mediated transport by specific proteins or by slippage through ion-coupled H+/OH transporters, and transport at the protein/lipid interface or through protein-dependent defects in the lipid structure. A variety of methods are available to study protein transport mechanisms accurately in cells and biomembrane vesicles including pH electrode recordings, pH-sensitive fluorescent and magnetic resonance probes, and potentiometric probes. In brush border vesicles from the renal proximal tubule, the characteristics of passive H+/OH permeability are quite similar to those reported for passive H+/OH permeability through pure lipid bilayers; slippage of protons through the brush border Na+/H+ antiporter or through brush border water channels is minimal. In contrast, passive H+/OH permeability in brush border vesicles from human placenta is mediated in part by a stilbene-sensitive membrane protein. To demonstrate the physiological significance of passive renal brush border H+/OH transport, proximal tubule acidification and cell pH regulation mechanisms are modeled mathematically for states of normal and altered H+/OH permeabilities.  相似文献   

6.
Most biological ion channels demonstrate a high degree of selectivity for one type of ion more than others, and in many cases, how they control attaining this is still not clear. So we have studied on some metal ion compounds of glutamate. The Glutamate and its meal ion compounds (Ca2+, Na+, K+ and Li+) were first modeled by ab initio calculations and then Monte Carlo simulation was used to calculate solvation free energies and also the complexes free energies for the related structures. The results indicated that Glutamate-Ca2+ have more stability in water than other metal ion. Also, it was found out that the more movement in ions; less stability of the structure would result. This trend can be seen both in gas and liquid phase.  相似文献   

7.
Voltage-gated sodium (Nav) channels and their Na+/K+ selectivity are of great importance in the mammalian neuronal signaling. According to mutational analysis, the Na+/K+ selectivity in mammalian Nav channels is mainly determined by the Lys and Asp/Glu residues located at the constriction site within the selectivity filter. Despite successful molecular dynamics simulations conducted on the prokaryotic Nav channels, the lack of Lys at the constriction site of prokaryotic Nav channels limits how much can be learned about the Na+/K+ selectivity in mammalian Nav channels. In this work, we modeled the mammalian Nav channel by mutating the key residues at the constriction site in a prokaryotic Nav channel (NavRh) to its mammalian counterpart. By simulating the mutant structure, we found that the Na+ preference in mammalian Nav channels is collaboratively achieved by the deselection from Lys and the selection from Asp/Glu within the constriction site.  相似文献   

8.
The high-affinity K+ transporter HAK5 from Arabidopsis (Arabidopsis thaliana) is essential for K+ acquisition and plant growth at low micromolar K+ concentrations. Despite its functional relevance in plant nutrition, information about functional domains of HAK5 is scarce. Its activity is enhanced by phosphorylation via the AtCIPK23/AtCBL1-9 complex. Based on the recently published three-dimensionalstructure of the bacterial ortholog KimA from Bacillus subtilis, we have modeled AtHAK5 and, by a mutational approach, identified residues G67, Y70, G71, D72, D201, and E312 as essential for transporter function. According to the structural model, residues D72, D201, and E312 may bind K+, whereas residues G67, Y70, and G71 may shape the selective filter for K+, which resembles that of K+shaker-like channels. In addition, we show that phosphorylation of residue S35 by AtCIPK23 is required for reaching maximal transport activity. Serial deletions of the AtHAK5 C-terminus disclosed the presence of an autoinhibitory domain located between residues 571 and 633 together with an AtCIPK23-dependent activation domain downstream of position 633. Presumably, autoinhibition of AtHAK5 is counteracted by phosphorylation of S35 by AtCIPK23. Our results provide a molecular model for K+ transport and describe CIPK-CBL-mediated regulation of plant HAK transporters.

Structure-function analysis of a high-affinity root K+ transporter reveals residues involved in transport, regulation by a protein kinase, and autoinhibition.  相似文献   

9.
Shortly after cardiac Na+ channels activate and initiate the action potential, inactivation ensues within milliseconds, attenuating the peak Na+ current, INa, and allowing the cell membrane to repolarize. A very limited number of Na+ channels that do not inactivate carry a persistent INa, or late INa. While late INa is only a small fraction of peak magnitude, it significantly prolongs ventricular action potential duration, which predisposes patients to arrhythmia. Here, we review our current understanding of inactivation mechanisms, their regulation, and how they have been modeled computationally. Based on this body of work, we conclude that inactivation and its connection to late INa would be best modeled with a “feet-on-the-door” approach where multiple channel components participate in determining inactivation and late INa. This model reflects experimental findings showing that perturbation of many channel locations can destabilize inactivation and cause pathological late INa.  相似文献   

10.
Jing Li 《Biophysical journal》2009,97(11):L29-L31
The crystal structure of Na+-coupled galactose symporter (vSGLT) reports the transporter in its substrate-bound state, with a Na+ ion modeled in a binding site corresponding to that of a homologous protein, leucine transporter (LeuT). In repeated molecular dynamics simulations, however, we find the Na+ ion instable, invariably and spontaneously diffusing out of the transporter through a pathway lined by D189, which appears to facilitate the diffusion of the ion toward the cytoplasm. Further analysis of the trajectories and close structural examination, in particular, comparison of the Na+-binding sites of vSGLT and LeuT, strongly indicates that the crystal structure of vSGLT actually represents an ion-releasing state of the transporter. The observed dynamics of the Na+ ion, in contrast to the substrate, also suggests that the cytoplasmic release of the Na+ ion precedes that of the substrate, thus shedding light on a key step in the transport cycle of this secondary transporter.  相似文献   

11.
Autotrophic members of the Sulfolobales (crenarchaeota) use the 3-hydroxypropionate/4-hydroxybutyrate cycle to assimilate CO2 into cell material. The product of the initial acetyl-CoA carboxylation with CO2, malonyl-CoA, is further reduced to malonic semialdehyde by an NADPH-dependent malonyl-CoA reductase (MCR); the enzyme also catalyzes the reduction of succinyl-CoA to succinic semialdehyde onwards in the cycle. Here, we present the crystal structure of Sulfolobus tokodaii malonyl-CoA reductase in the substrate-free state and in complex with NADP+ and CoA. Structural analysis revealed an unexpected reaction cycle in which NADP+ and CoA successively occupy identical binding sites. Both coenzymes are pressed into an S-shaped, nearly superimposable structure imposed by a fixed and preformed binding site. The template-governed cofactor shaping implicates the same binding site for the 3′- and 2′-ribose phosphate group of CoA and NADP+, respectively, but a different one for the common ADP part: the β-phosphate of CoA aligns with the α-phosphate of NADP+. Evolution from an NADP+ to a bispecific NADP+ and CoA binding site involves many amino acid exchanges within a complex process by which constraints of the CoA structure also influence NADP+ binding. Based on the paralogous aspartate-β-semialdehyde dehydrogenase structurally characterized with a covalent Cys-aspartyl adduct, a malonyl/succinyl group can be reliably modeled into MCR and discussed regarding its binding mode, the malonyl/succinyl specificity, and the catalyzed reaction. The modified polypeptide surrounding around the absent ammonium group in malonate/succinate compared with aspartate provides the structural basis for engineering a methylmalonyl-CoA reductase applied for biotechnical polyester building block synthesis.  相似文献   

12.
A general model for the sorption of trivalent cations to wheat-root (Triticum aestivum L cv. Scout 66) plasma membranes (PM) has been developed and includes the first published coefficients for La3+ and Al3+ binding to a biological membrane. Both ions are rhizotoxic, and the latter ion is the principal contributor to the toxicity of acidic soils around the world. The model takes into account both the electrostatic attraction and the binding of cations to the negatively charged PM surface. Ion binding is modeled as the reaction P +I ZPI Z −1 in which P represents a negatively charged PM ligand, located in an estimated area of 540 ?2, and I Z represents an ion of charge Z. Binding constants for the reaction were assigned for K+ (1 m −1) and Ca2+ (30 m −1) and evaluated experimentally for La3+ (2200 m −1) and H+ (21,500 m −1). Al sorption is complicated by Al3+ hydrolysis that yields hydroxoaluminum species that are also sorbed. Binding constants of 30 and 1 m −1 were assigned for AlOH2+ and Al(OH)+ 2, respectively, then a constant for Al3+ (20,000 m −1) was evaluated experimentally using the previously obtained values for K+, Ca2+ and H+ binding. Electrostatic attraction was modeled according to Gouy-Chapman theory. Evaluation of parameters was based upon the sorption of ions to PM vesicles suspended in solutions containing variable concentrations of H+, Ca2+ and La3+ or Al3+. Use of small volumes, and improved assay techniques, allowed the measurement of concentration depletions caused by sorption to vesicles. Some independent confirmation of our model is provided by substantial agreement between our computations and two published reports of La3+ effects upon zeta potentials of plant protoplasts. The single published report concerning the electrostatic effects of Al on cell membranes is in essential agreement with the model. Received: 6 January 1997/Revised: 6 June 1997  相似文献   

13.
Inosine monophosphate dehydrogenase (IMPDH) enzyme involves in GMP biosynthesis pathway. Type I hIMPDH is expressed at lower levels in all cells, whereas type II is especially observed in acute myelogenous leukemia, chronic myelogenous leukemia cancer cells, and 10?ns simulation of the IMP–NAD+ complex structures (PDB ID. 1B3O and 1JCN) have revealed the presence of a few conserved hydrophilic centers near carboxamide group of NAD+. Three conserved water molecules (W1, W, and W1′) in di-nucleotide binding pocket of enzyme have played a significant role in the recognition of carboxamide group (of NAD+) to D274 and H93 residues. Based on H-bonding interaction of conserved hydrophilic (water molecular) centers within IMP–NAD+-enzyme complexes and their recognition to NAD+, some covalent modification at carboxamide group of di-nucleotide (NAD+) has been made by substituting the –CONH2group by –CONHNH2 (carboxyl hydrazide group) using water mimic inhibitor design protocol. The modeled structure of modified ligand may, though, be useful for the development of antileukemic agent or it could be act as better inhibitor for hIMPDH-II.  相似文献   

14.
Wang X  Su B  Liu W  He X  Gao Y  Castellani RJ  Perry G  Smith MA  Zhu X 《Aging cell》2011,10(5):807-823
Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson’s disease (PD) can be modeled by the administration of the neurotoxin 1‐methyl‐4‐phenylpyridinium (MPP+). Because abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH‐SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+‐induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+‐induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+‐induced toxicity. On the other hand, thiol antioxidant N‐acetylcysteine or glutamate receptor antagonist D‐AP5 also partially alleviates MPP+‐induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+‐induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μm MPP+ induced mitochondrial fragmentation only in tyrosine hydroxylase (TH)‐positive dopaminergic neurons in a similar pattern to that in SH‐SY5Y cells but had no effects on these mitochondrial parameters in TH‐negative neurons. Overall, these findings suggest that DLP1‐dependent mitochondrial fragmentation plays a crucial role in mediating MPP+‐induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD.  相似文献   

15.
The energetics that give rise to selectivity sequences of ionic binding selectivity of Li+, Na+, K+, Rb+, and Cs+ in a model of a calcium channel are considered. This work generalizes Eisenman’s classic treatment (Biophys J 2(Suppl. 2):259, 1962) by including multiple, mobile binding site oxygens that coordinate many permeating ions (all modeled as charged, hard spheres). The selectivity filter of the model calcium channel allows the carboxyl terminal groups of glutamate and aspartate side chains to directly interact with and coordinate the permeating ions. Ion dehydration effects are represented with a Born energy between the dielectric coefficients of the selectivity filter and the bath. High oxygen concentration creates a high field strength site that prefers small ions, as in Eisenman’s model. On the other hand, a low filter dielectric constant also creates a high field strength site, but this site prefers large ions, contrary to Eisenman’s model. These results indicate that field strength does not have a unique effect on ionic binding selectivity sequences once entropic, electrostatic, and dehydration forces are included in the model. Thus, Eisenman’s classic relationship between field strength and selectivity sequences must be supplemented with additional information about selectivity filters such as the calcium channel that has amino acid side chains mixing with ions to make a crowded permeation pathway.  相似文献   

16.
We investigate the electrophysiological salt stress response of the salt-sensitive charophyte Chara australis as a function of time in saline artificial pond water (saline APW) containing 50 mM NaCl and 0.1 mM CaCl2. The effects are due to an increase in Na+ concentration rather than an increase in Cl concentration or medium osmolarity. A previous paper (Shepherd et al. Plant Cell Environ 31:1575–1591, 2008) described the rise in the background conductance and inhibition of proton pumping in saline APW in the first 60 min. Here we investigate the shift of membrane potential difference (PD) to levels above −100 mV and the change of shape of the current–voltage (I/V) profiles to upwardly concave. Arguing from thermodynamics, the I/V characteristics can be modeled by channels that conduct H+ or OH. OH was chosen, as H+ required an unrealistic increase in the number/permeability of the channels at higher pH levels. Prolonged exposure to saline APW stimulated opening of more OH channels. Recovery was still possible even at a PD near −50 mV, with partial return of proton pumping and a decrease in OH current following APW wash. Upon change of pH from 7 to 9, the response was consistent with previously observed I/V characteristics of OH channels. For a pH change to 6, the response was transient before channel closure but could still be modeled. The consequences of opening of H+ or OH channels while the cell is under salt stress are discussed.  相似文献   

17.
Summary A simple numerical model for theNecturus gallbladder epithelium is presented. K+, Na+ and Cl cross the mucosal and serosal membranes as well as the junctions by means of electrodiffusion; furthermore the mucosal membrane contains a neutral entry mechanism for NaCl and the serosal membrane contains an active pump for K+ and Na+. The values which have been used for the model are taken from the literature. The model can only attain steady states if the resistance of the serosal membrane is lower than 1000 cm2. Values reported in the literature for the resistance of this membrane vary from about 3000 to about 100 cm2. We shall argue, however, that the higher estimates are in error because they are derived from a model of the tissue in which each membrane and the junction are modeled by a resistor; this procedure is invalid because the resistance of the lateral intercellular space relative to the resistance of the tight junctions is neglected and consequently the resistance of the serosal membrane is overestimated by a factor of about four. Apart from predicting a realistic steady state at normal external concentrations the model can predict quantitatively several experimental results obtained from the living epithelium. We have focused on the experiments which test the permeabilities of the serosal membrane and the properties of the pump:i) Replacement of serosal Cl by an impermeant ion.ii) Replacement of serosal K+ by Na+.iii) Inhibiting the (Na+, K+)-pump. The best correspondence between model and experiments is obtained when the pump is assumed to be electrogenic (or rheogenic) with a ratio of coupling between Na+ and K+ of 32. In this case both model and direct experiments (also presented in this paper) show an initial abrupt depolarization of 6 to 7 mV. The model also shows that it cannot be concluded fromi andii that the Cl permeability of the serosal membrane is low. The model explains, even with high passive Cl permeabilities, why the intracellular Cl concentration is relatively unaffected by paracellular currents, a fact which in other epithelia has been taken as an implication of a low Cl permeability of the serosal membranes.  相似文献   

18.
In solutions containing DNA and cations of more than one type, the competitive interactions of these cations with DNA can be modeled as an ion exchange process that can be described quantitatively by means of the theoretical approach reported in this paper. Under conditions of experimental interest the radial distribution function of each type of counterion is calculated from the results of canonical Monte Carlo (MC) simulations using the primitive model for DNA (having a helical charge distribution) and for the electrolyte ions. These ions consist of monovalent coions, monovalent counterions intended to represent Na+, and counterions of a second type designated Mz+, having variable size and charge (z ≥ 1). The competitive association of these counterions with DNA is described in terms of D, a parameter analogous to an ion exchange equilibrium quotient. Values of D are calculated from the results of our MC simulations and compared with corresponding predictions of the Poisson–Boltzmann (PB) cell model and with results inferred from analyses of previously published nmr measurements. Over typical experimental concentration ranges (0.02M < [Na+] < 0.20M, 0.001 < [Mz+] < 0.160M), DMC and DPB both are predicted to be relatively independent of the bulk ion concentrations. For various specifications of the size and charge of the competing cation (Mz+), DMC and DPB exhibit similar trends, although the MC simulations consistently predict that the cations bearing a higher charge density than that of Na+ are somewhat stronger competitors than indicated by the PB calculations. For monovalent and divalent competitors of varying radii, theoretical predictions of D are compared with values obtained by fitting nmr measurements. If the hard-sphere radii specified in the simulations are the (hydrated) ionic radii determined from conductance measurements, then the MC predictions and the corresponding nmr results are in reasonable agreement for various monovalent competitors and for a divalent polyamine, but not for Ca2+ and Mg2+.  相似文献   

19.
Lithium transport across the cell membrane is interesting in the light of general cell physiology and because of its alteration during numerous human diseases. The mechanism of Li+ transfer has been studied mainly in erythrocytes with a slow kinetics of ion exchange and therefore under the unbalanced ion distribution. Proliferating cultured cells with a rapid ion exchange have not been used practically in study of Li+ transport. In the present paper, the kinetics of Li+ uptake and exit, as well as its balanced distribution across the plasma membrane of U937 cells, were studied at minimal external Li+ concentrations and after the whole replacement of external Na+ for Li+. It is found that a balanced Li+ distribution attained at a high rate similar to that for Na+ and Cl? and that Li+/Na+ discrimination under balanced ion distribution at 1–10 mM external Li+ stays on 3 and drops to 1 following Na, K-ATPase pump blocking by ouabain. About 80% of the total Li+ flux across the plasma membrane under the balanced Li+ distribution at 5 mM external Li+ accounts for the equivalent Li+/Li+ exchange. The majority of the Li+ flux into the cell down the electrochemical gradient is a flux through channels and its small part may account for the NC and NKCC cotransport influxes. The downhill Li+ influxes are balanced by the uphill Li+ efflux involved in Li+/Na+ exchange. The Na+ flux involved in the countertransport with the Li+ accounts for about 0.5% of the total Na+ flux across the plasma membrane. The study of Li+ transport is an important approach to understanding the mechanism of the equivalent Li+/Li+/Na+/Na+ exchange, because no blockers of this mode of ion transfer are known and it cannot be revealed by electrophysiological methods. Cells cultured in the medium where Na+ is replaced for Li+ are recommended as an object for studying cells without the Na,K-ATPase pump and with very low intracellular Na+ and K+ concentration.  相似文献   

20.
Ion conduction in K+-channels is usually described in terms of concerted movements of K+ progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K+-channels are known to be highly selective for K+ over Na+, some K+ channels conduct Na+ in the absence of K+. Other ions are known to permeate K+-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K+-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb+ translocation show at atomic level why experimental Rb+ conductance is slightly lower than that of K+. In contrast to K+ or Rb+, external Na+ block K+ currents, and the sites where Na+ transport is hindered are characterized. Translocation of K+/Na+ mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na+, excluding Na+ from a channel already loaded with K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号