共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Autophagy has been recently demonstrated to control cell and tissue homeostasis, including the functions of various metabolic tissues. However, it remains unclear whether autophagy is critical for the central nervous system and particularly the hypothalamus for exerting metabolic regulation. Using autophagy-related protein 7 (Atg7) as an autophagic marker, this work showed that autophagy was highly active in the mediobasal hypothalamus of normal mice. In contrast, chronic development of dietary obesity was associated with autophagic decline in the mediobasal hypothalamus. To investigate the potential role of autophagy in the hypothalamic control of metabolic physiology, a mouse model was developed with autophagic inhibition in the mediobasal hypothalamus using site-specific delivery of lentiviral shRNA against Atg7. This model revealed that hypothalamic inhibition of autophagy increased energy intake and reduced energy expenditure. These metabolic changes were sufficient to increase body weight gain under normal chow feeding and exacerbate the progression of obesity and whole-body insulin resistance under high-fat diet feeding. To explore the underlying mechanism, this study found that defective hypothalamic autophagy led to hypothalamic inflammation, including the activation of proinflammatory IκB kinase β pathway. Using brain-specific IκB kinase β knockout mice, it was found that the effects of defective hypothalamic autophagy in promoting obesity were reversed by IκB kinase β inhibition in the brain. In conclusion, hypothalamic autophagy is crucial for the central control of feeding, energy, and body weight balance. Conversely, decline of hypothalamic autophagy under conditions of chronic caloric excess promotes hypothalamic inflammation and thus impairs hypothalamic control of energy balance, leading to accelerated development of obesity and comorbidities. 相似文献
5.
Yang Y Groshong JS Matta H Gopalakrishnan R Yi H Chaudhary PM 《The Journal of biological chemistry》2011,286(32):27988-27997
Myeloma cells are dependent on IL6 for their survival and proliferation during the early stages of disease, and independence from IL6 is associated with disease progression. The role of the NF-κB pathway in the IL6-independent growth of myeloma cells has not been studied. Because human herpesvirus 8-encoded K13 selectively activates the NF-κB pathway, we have used it as a molecular tool to examine the ability of the NF-κB pathway to confer IL6 independence on murine plasmacytomas. We demonstrated that ectopic expression of K13, but not its NF-κB-defective mutant or a structural homolog, protected plasmacytomas against IL6 withdrawal-induced apoptosis and resulted in emergence of IL6-independent clones that could proliferate long-term in vitro in the absence of IL6 and form abdominal plasmacytomas with visceral involvement when injected intraperitoneally into syngeneic mice. These IL6-independent clones were dependent on NF-κB activity for their survival and proliferation but were resistant to dexamethasone and INCB018424, a selective Janus kinase 1/2 inhibitor. Ectopic expression of human T cell leukemia virus 1-encoded Tax protein, which resembles K13 in inducing constitutive NF-κB activation, similarly protected plasmacytoma cells against IL6 withdrawal-induced apoptosis. Although K13 is known to up-regulate IL6 gene expression, its protective effect was not due to induction of endogenous IL6 production but instead was associated with sustained expression of several antiapoptotic members of the Bcl2 family upon IL6 withdrawal. Collectively, these results demonstrate that NF-κB activation cannot only promote the emergence of IL6 independence during myeloma progression but can also confer resistance to dexamethasone and INCB018424. 相似文献
6.
Balasubramanian S Fan M Messmer-Blust AF Yang CH Trendel JA Jeyaratnam JA Pfeffer LM Vestal DJ 《The Journal of biological chemistry》2011,286(22):20054-20064
7.
Ehlting C Ronkina N Böhmer O Albrecht U Bode KA Lang KS Kotlyarov A Radzioch D Gaestel M Häussinger D Bode JG 《The Journal of biological chemistry》2011,286(27):24113-24124
8.
Kliem C Merling A Giaisi M Köhler R Krammer PH Li-Weber M 《The Journal of biological chemistry》2012,287(13):10200-10209
Curcumin is the active ingredient of the spice turmeric and has been shown to have a number of pharmacologic and therapeutic activities including antioxidant, anti-microbial, anti-inflammatory, and anti-carcinogenic properties. The anti-inflammatory effects of curcumin have primarily been attributed to its inhibitory effect on NF-κB activity due to redox regulation. In this study, we show that curcumin is an immunosuppressive phytochemical that blocks T cell-activation-induced Ca(2+) mobilization with IC(50) = ~12.5 μM and thereby prevents NFAT activation and NFAT-regulated cytokine expression. This finding provides a new mechanism for curcumin-mediated anti-inflammatory and immunosuppressive function. We also show that curcumin can synergize with CsA to enhance immunosuppressive activity because of different inhibitory mechanisms. Furthermore, because Ca(2+) is also the secondary messenger crucial for the TCR-induced NF-κB signaling pathway, our finding also provides another mechanism by which curcumin suppresses NF-κB activation. 相似文献
9.
10.
The pathologic response to implant wear-debris constitutes a major component of inflammatory osteolysis and remains under intense investigation. Polymethylmethacrylate (PMMA) particles, which are released during implant wear and loosening, constitute a major culprit by virtue of inducing inflammatory and osteolytic responses by macrophages and osteoclasts, respectively. Recent work by several groups has identified important cellular entities and secreted factors that contribute to inflammatory osteolysis. In previous work, we have shown that PMMA particles contribute to inflammatory osteolysis through stimulation of major pathways in monocytes/macrophages, primarily NF-κB and MAP kinases. The former pathway requires assembly of large IKK complex encompassing IKK1, IKK2, and IKKγ/NEMO. We have shown recently that interfering with the NF-κB and MAPK activation pathways, through introduction of inhibitors and decoy molecules, impedes PMMA-induced inflammation and osteolysis in mouse models of experimental calvarial osteolysis and inflammatory arthritis. In this study, we report that PMMA particles activate the upstream transforming growth factor β-activated kinase-1 (TAK1), which is a key regulator of signal transduction cascades leading to activation of NF-κB and AP-1 factors. More importantly, we found that PMMA particles induce TAK1 binding to NEMO and UBC13. In addition, we show that PMMA particles induce TRAF6 and UBC13 binding to NEMO and that lack of TRAF6 significantly attenuates NEMO ubiquitination. Altogether, these observations suggest that PMMA particles induce ubiquitination of NEMO, an event likely mediated by TRAF6, TAK1, and UBC13. Our findings provide important information for better understanding of the mechanisms underlying PMMA particle-induced inflammatory responses. 相似文献
11.
Mitogen- and stress-activated protein kinases, MSK1 and the closely related isoform MSK2, are nuclear kinases that are activated following mitogen stimulation or cellular stress, including UV radiation, by the ERK1/2 and p38 MAPK signaling cascades, respectively. However, factors that differentially regulate MSK1 and MSK2 have not been well characterized. Here we report that the CK2 protein kinase, which contributes to NF-κB activation following UV radiation in a p38-dependent manner, physically interacts with MSK2 but not MSK1 and that CK2 inhibition specifically impairs UV-induced MSK2 kinase activation. A putative site of CK2 phosphorylation was mapped to MSK2 residue Ser324 and when substituted to alanine (S324A) also compromised MSK2 activity. RNA interference-mediated depletion of MSK2 in human MDA-MB-231 cells, but not MSK1 depletion, resulted in impaired UV-induced phosphorylation of NF-κB p65 at Ser276 in vivo, which was restored by the ectopic expression of MSK2 but not by MSK2-S324A. Furthermore, UV radiation led to the activation of NF-κB-responsive gene expression in MDA-MB-231 cells and induced p65 transactivation capacity that was dependent on MSK2, MSK2 residue Ser324, and p65-Ser276. These results suggest that MSK1 and MSK2 are differentially regulated by CK2 during the UV response and that MSK2 is the major protein kinase responsible for the UV-induced phosphorylation of p65 at Ser276 that positively regulates NF-κB activity in MDA-MB-231 cells. 相似文献
12.
13.
Arcipowski KM Stunz LL Graham JP Kraus ZJ Vanden Bush TJ Bishop GA 《The Journal of biological chemistry》2011,286(12):9948-9955
Latent membrane protein 1 (LMP1), encoded by Epstein-Barr virus, is required for EBV-mediated B cell transformation and plays a significant role in the development of posttransplant B cell lymphomas. LMP1 has also been implicated in exacerbation of autoimmune diseases such as systemic lupus erythematosus. LMP1 is a constitutively active functional mimic of the tumor necrosis factor receptor superfamily member CD40, utilizing tumor necrosis factor receptor-associated factor (TRAF) adaptor proteins to induce signaling. However, LMP1-mediated B cell activation is amplified and sustained compared with CD40. We have previously shown that LMP1 and CD40 use TRAFs 1, 2, 3, and 5 differently. TRAF6 is important for CD40 signaling, but the role of TRAF6 in LMP1 signaling in B cells is not clear. Although TRAF6 binds directly to CD40, TRAF6 interaction with LMP1 in B cells has not been characterized. Here we tested the hypothesis that TRAF6 is a critical regulator of LMP1 signaling in B cells, either as part of a receptor-associated complex and/or as a cytoplasmic adaptor protein. Using TRAF6-deficient B cells, we determined that TRAF6 was critical for LMP1-mediated B cell activation. Although CD40-mediated TRAF6-dependent signaling does not require the TRAF6 receptor-binding domain, we found that LMP1 signaling required the presence of this domain. Furthermore, TRAF6 was recruited to the LMP1 signaling complex via the TRAF1/2/3/5 binding site within the cytoplasmic domain of LMP1. 相似文献
14.
15.
Tanneberger K Pfister AS Kriz V Bryja V Schambony A Behrens J 《The Journal of biological chemistry》2011,286(22):19204-19214
Amer1/WTX binds to the tumor suppressor adenomatous polyposis coli and acts as an inhibitor of Wnt signaling by inducing β-catenin degradation. We show here that Amer1 directly interacts with the armadillo repeats of β-catenin via a domain consisting of repeated arginine-glutamic acid-alanine (REA) motifs, and that Amer1 assembles the β-catenin destruction complex at the plasma membrane by recruiting β-catenin, adenomatous polyposis coli, and Axin/Conductin. Deletion or specific mutations of the membrane binding domain of Amer1 abolish its membrane localization and abrogate negative control of Wnt signaling, which can be restored by artificial targeting of Amer1 to the plasma membrane. In line, a natural splice variant of Amer1 lacking the plasma membrane localization domain is deficient for Wnt inhibition. Knockdown of Amer1 leads to the activation of Wnt target genes, preferentially in dense compared with sparse cell cultures, suggesting that Amer1 function is regulated by cell contacts. Amer1 stabilizes Axin and counteracts Wnt-induced degradation of Axin, which requires membrane localization of Amer1. The data suggest that Amer1 exerts its negative regulatory role in Wnt signaling by acting as a scaffold protein for the β-catenin destruction complex and promoting stabilization of Axin at the plasma membrane. 相似文献
16.
Ertekin A Aramini JM Rossi P Leonard PG Janjua H Xiao R Maglaqui M Lee HW Prestegard JH Montelione GT 《The Journal of biological chemistry》2012,287(20):16541-16549
CDK2AP1 (cyclin-dependent kinase 2-associated protein 1), corresponding to the gene doc-1 (deleted in oral cancer 1), is a tumor suppressor protein. The doc-1 gene is absent or down-regulated in hamster oral cancer cells and in many other cancer cell types. The ubiquitously expressed CDK2AP1 protein is the only known specific inhibitor of CDK2, making it an important component of cell cycle regulation during G(1)-to-S phase transition. Here, we report the solution structure of CDK2AP1 by combined methods of solution state NMR and amide hydrogen/deuterium exchange measurements with mass spectrometry. The homodimeric structure of CDK2AP1 includes an intrinsically disordered 60-residue N-terminal region and a four-helix bundle dimeric structure with reduced Cys-105 in the C-terminal region. The Cys-105 residues are, however, poised for disulfide bond formation. CDK2AP1 is phosphorylated at a conserved Ser-46 site in the N-terminal "intrinsically disordered" region by IκB kinase ε. 相似文献
17.
Lin SC Chung JY Lamothe B Rajashankar K Lu M Lo YC Lam AY Darnay BG Wu H 《Journal of molecular biology》2008,376(2):526-540
Nuclear factor κB (NF-κB) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-κB activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-κB activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways. 相似文献
18.
Mizuguchi H Terao T Kitai M Ikeda M Yoshimura Y Das AK Kitamura Y Takeda N Fukui H 《The Journal of biological chemistry》2011,286(35):30542-30551
The histamine H(1) receptor (H1R) gene is up-regulated in patients with allergic rhinitis. However, the mechanism and reason underlying this up-regulation are still unknown. Recently, we reported that the H1R expression level is strongly correlated with the severity of allergic symptoms. Therefore, understanding the mechanism of this up-regulation will help to develop new anti-allergic drugs targeted for H1R gene expression. Here we studied the molecular mechanism of H1R up-regulation in HeLa cells that express H1R endogenously in response to histamine and phorbol 12-myristate 13-acetate (PMA). In HeLa cells, histamine stimulation caused up-regulation of H1R gene expression. Rottlerin, a PKCδ-selective inhibitor, inhibited up-regulation of H1R gene expression, but Go6976, an inhibitor of Ca(2+)-dependent PKCs, did not. Histamine or PMA stimulation resulted in PKCδ phosphorylation at Tyr(311) and Thr(505). Activation of PKCδ by H(2)O(2) resulted in H1R mRNA up-regulation. Overexpression of PKCδ enhanced up-regulation of H1R gene expression, and knockdown of the PKCδ gene suppressed this up-regulation. Histamine or PMA caused translocation PKCδ from the cytosol to the Golgi. U0126, an MEK inhibitor, and DPQ, a poly(ADP-ribose) polymerase-1 inhibitor, suppressed PMA-induced up-regulation of H1R gene expression. These results were confirmed by a luciferase assay using the H1R promoter. Phosphorylation of ERK and Raf-1 in response to PMA was also observed. However, real-time PCR analysis showed no inhibition of H1R mRNA up-regulation by a Raf-1 inhibitor. These results suggest the involvement of the PKCδ/ERK/poly(ADP-ribose) polymerase-1 signaling pathway in histamine- or PMA-induced up-regulation of H1R gene expression in HeLa cells. 相似文献
19.
Davis-Dusenbery BN Chan MC Reno KE Weisman AS Layne MD Lagna G Hata A 《The Journal of biological chemistry》2011,286(32):28097-28110