共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation of expression of cellulosomal cellulase and hemicellulase genes in Clostridium cellulovorans
下载免费PDF全文

The regulation of expression of the genes encoding the cellulases and hemicellulases of Clostridium cellulovorans was studied at the mRNA level with cells grown under various culture conditions. A basic pattern of gene expression and of relative expression levels was obtained from cells grown in media containing poly-, di- or monomeric sugars. The cellulase (cbpA and engE) and hemicellulase (xynA) genes were coordinately expressed in medium containing cellobiose or cellulose. Growth in the presence of cellulose, xylan, and pectin gave rise to abundant expression of most genes (cbpA-exgS, engH, hbpA, manA, engM, engE, xynA, and/or pelA) studied. Moderate expression of cbpA, engH, manA, engE, and xynA was observed when cellobiose or fructose was used as the carbon source. Low levels of mRNA from cbpA, manA, engE, and xynA were observed with cells grown in lactose, mannose, and locust bean gum, and very little or no expression of cbpA, engH, manA, engE, and xynA was detected in glucose-, galactose-, maltose-, and sucrose-grown cells. The cbpA-exgS and engE genes were most frequently expressed under all conditions studied, whereas expression of xynA and pelA was more specifically induced at higher levels in xylan- or pectin-containing medium, respectively. Expression of the genes (cbpA, hbpA, manA, engM, and engE) was not observed in the presence of most soluble di- or monosaccharides such as glucose. These results support the hypotheses that there is coordinate expression of some cellulases and hemicellulases, that a catabolite repression type of mechanism regulates cellulase expression in rapidly growing cells, and that the presence of hemicelluloses has an effect on cellulose utilization by the cell. 相似文献
2.
The cellulosome of Clostridium cellulovorans consists of three major subunits: CbpA, EngE, and ExgS. The C. cellulovorans scaffolding protein (CbpA) contains nine hydrophobic repeated domains (cohesins) for the binding of enzymatic subunits. Cohesin domains are quite homologous, but there are some questions regarding their binding specificity because some of the domains have regions of low-level sequence similarity. Two cohesins which exhibit 60% sequence similarity were investigated for their ability to bind cellulosomal enzymes. Cohesin 1 (Coh1) was found to contain amino acid residues corresponding to amino acids 312 to 453 of CbpA, which contains a total of 1,848 amino acid residues. Coh6 was determined to contain amino acid residues corresponding to residues 1113 to 1254 of CbpA. By genetic construction, these two cohesins were each fused to MalE, producing MalE-Coh1 and MalE-Coh6. The abilities of two fusion proteins to bind to EngE, ExgS, and CbpA were compared. Although MalE-Coh6 could bind EngE and ExgS, little or no binding of the enzymatic subunits was observed with MalE-Coh1. Significantly, the abilities of the two fusion proteins to bind CbpA were similar. The binding of dockerin-containing enzymes to cohesin-containing proteins was suggested as a model for assembly of cellulosomes. In our examination of the role of dockerins, it was also shown that the binding of endoglucanase B (EngB) to CbpA was dependent on the presence of EngB's dockerin. These results suggest that different cohesins may function with differing efficiency and specificity, that cohesins may play some role in the formation of polycellulosomes through Coh-CbpA interactions, and that dockerins play an important role during the interaction of cellulosomal enzymes and cohesins present in CbpA. 相似文献
3.
A five-gene cluster around the gene in Clostridium cellulovorans that encodes endoglucanase EngL, which is involved in plant cell wall degradation, has been cloned and sequenced. As a result, a mannanase gene, manA, has been found downstream of engL. The manA gene consists of an open reading frame with 1,275 nucleotides encoding a protein with 425 amino acids and a molecular weight of 47, 156. ManA has a signal peptide followed by a duplicated sequence (DS, or dockerin) at its N terminus and a catalytic domain which belongs to family 5 of the glycosyl hydrolases and shows high sequence similarity with fungal mannanases, such as Agaricus bisporus Cel4 (17.3% identity), Aspergillus aculeatus Man1 (23.7% identity), and Trichoderma reesei Man1 (22.7% identity). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and N-terminal amino acid sequence analyses of the purified recombinant ManA (rManA) indicated that the N-terminal region of the rManA contained a DS and was truncated in Escherichia coli cells. Furthermore, Western blot analysis indicated that ManA is one of the cellulosomal subunits. ManA production is repressed by cellobiose. 相似文献
4.
Arai T Kosugi A Chan H Koukiekolo R Yukawa H Inui M Doi RH 《Applied microbiology and biotechnology》2006,71(5):654-660
The cellulosomal family 9 cellulase genes engH, engK, engL, engM, and engY of Clostridium cellulovorans have been cloned and sequenced. We compared the enzyme activity of family 9 cellulosomal cellulases from C. cellulovorans and their derivatives. EngH has the highest activity toward soluble cellulose derivatives such as carboxymethylcellulose (CMC) as well as insoluble cellulose such as acid-swollen cellulose (ASC). EngK has high activity toward insoluble cellulose such as ASC and Avicel. The results of thin-layer chromatography showed that the cleavage products of family 9 cellulases were varied. These results indicated that family 9 endoglucanases possess different modes of attacking substrates and produce varied products. To investigate the functions of the carbohydrate-binding module (CBM) and the catalytic module, truncated derivatives of EngK, EngH, and EngY were constructed and characterized. EngHΔCBM and EngYΔCBM devoid of the CBM lost activity toward all substrates including CMC. EngKΔCBM and EngMΔCBM did not lose activity toward CMC but lost activity toward Avicel. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity. 相似文献
5.
6.
Clostridium cellulovorans, an anaerobic bacterium, produces a small nonenzymatic protein called HbpA, which has a surface layer homology domain and a type I cohesin domain similar to those found in the cellulosomal scaffolding protein CbpA. In this study, we demonstrated that HbpA could bind to cell wall fragments from C. cellulovorans and insoluble polysaccharides and form a complex with cellulosomal cellulases endoglucanase B (EngB) and endoglucanase L (EngL). Synergistic degradative action of the cellulosomal cellulase and HbpA complexes was demonstrated on acid-swollen cellulose, Avicel, and corn fiber. We propose that HbpA functions to bind dockerin-containing cellulosomal enzymes to the cell surface and complements the activity of cellulosomes. 相似文献
7.
Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans 总被引:1,自引:0,他引:1
下载免费PDF全文

Clostridium cellulovorans produces a multienzyme cellulose-degrading complex called the cellulosome. In this study, we determined the synergistic effects on crystalline cellulose degradation by three different recombinant cellulosomes containing either endoglucanase EngE, endoglucanase EngH, or exoglucanase ExgS bound to mini-CbpA, a part of scaffolding protein CbpA. EngE, EngH, and ExgS are classified into the glycosyl hydrolase families 5, 9, and 48, respectively. The assembly of ExgS and EngH with mini-CbpA increased the activity against insoluble cellulose 1.5- to 3-fold, although no effects on activity against soluble cellulose were observed. These results indicated that mini-CbpA could help cellulase components degrade insoluble cellulose but not soluble cellulose. The mixture of the cellulosomes containing ExgS and EngH showed higher activity and synergy degrees than the other cellulosome mixtures, indicating the synergistic effect between EngH and ExgS was the most dominant effect among the three mixtures for crystalline cellulose degradation. Reactions were also performed by adding different cellulosomes in a sequential manner. When ExgS was used for the initial reaction followed by EngE and EngH, almost no synergistic effect was observed. On the other hand, when EngE or EngH was used for the first reaction followed by ExgS, synergistic effects were observed. These results indicated that the initial reactions by EngH and/or EngE promoted cellulose degradation by ExgS. 相似文献
8.
Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation 总被引:1,自引:0,他引:1
下载免费PDF全文

Plant cell walls are comprised of cellulose and hemicellulose and other polymers that are intertwined, and this complex structure presents a barrier to degradation by pure cellulases or hemicellulases. In this study, we determined the synergistic effects on corn cell wall degradation by the action of cellulosomal xylanase XynA and cellulosomal cellulases from Clostridium cellulovorans. XynA minicellulosomes and cellulase minicellulosomes were found to degrade corn cell walls synergistically but not purified substrates such as xylan and crystalline cellulose. The mixture of XynA and cellulases at a molar ratio of 1:2 showed the highest synergistic effect of 1.6 on corn cell wall degradation. The amounts both of xylooligosaccharides and cellooligosaccharides liberated from corn cell walls were increased by the synergistic action of XynA and cellulases. Although synergistic effects on corn cell wall degradation were found in simultaneous reactions with XynA and cellulases, no synergistic effects were observed in sequential reactions. The possible mechanism of synergism between XynA and cellulases is discussed. 相似文献
9.
Clostridium cellulovorans produces an efficient enzyme complex for the degradation of lignocellulosic biomass. In our previous study, we detected and identified protein spots that interacted with a fluorescently labeled cohesin biomarker via two-dimensional gel electrophoresis. One novel, putative cellulosomal protein (referred to as endoglucanase Z) contains a catalytic module from the glycosyl hydrolase family (GH9) and demonstrated higher levels of expression than other cellulosomal cellulases in Avicel-containing cultures. Purified EngZ had optimal activity at pH 7.0, 40°C, and the major hydrolysis product from the cellooligosaccharides was cellobiose. EngZ's specific activity toward crystalline cellulose (Avicel and acid-swollen cellulose) was 10-20-fold higher than other cellulosomal cellulase activities. A large percentage of the reducing ends that were produced by this enzyme from acid-swollen cellulose were released as soluble sugar. EngZ has the capability of reducing the viscosity of Avicel at an intermediate-level between exo- and endo-typing cellulases, suggesting that it is a processive endoglucanase. In conclusion, EngZ was highly expressed in cellulolytic systems and demonstrated processive endoglucanase activity, suggesting that it plays a major role in the hydrolysis of crystalline cellulose and acts as a cellulosomal enzyme in C. cellulovorans. 相似文献
10.
The planar and anchoring residues of the family IIIa cellulose binding domain (CBD) from the cellulosomal scaffolding protein of Clostridium cellulovorans were investigated by site-directed mutagenesis and cellulose binding studies. By fusion with maltose binding protein, the family IIIa recombinant wild-type and mutant CBDs from C. cellulovorans were expressed as soluble forms. Cellulose binding tests of the mutant CBDs indicated that the planar strip residues played a major role in cellulose binding and that the anchoring residues played only a minor role. 相似文献
11.
Nucleotide sequence and characteristics of endoglucanase gene engB from Clostridium cellulovorans 总被引:7,自引:0,他引:7
An endoglucanase gene, engB, from Clostridium cellulovorans, previously cloned into pUC19, has been further characterized and its product investigated. The enzyme, EngB, encoded by the gene was secreted into the periplasmic space of Escherichia coli. The enzyme was active against carboxymethylcellulose, xylan and lichenan but not Avicel (crystalline cellulose). The sequenced gene showed an open reading frame of 1323 base pairs and coded for a protein with a molecular mass of 48.6 kDa. The mRNA contained a typical Gram-positive ribosome-binding site sequence GGAGG and a sequence coding for a putative signal peptide. There is high amino acid and base sequence homology between the N-terminal regions of EngB and another C. cellulovorans endoglucanase, EngD, but they differ significantly in their C-termini. Deletion analyses revealed that up to 32 amino acids of the N-terminus and 52 amino acids of the C-terminus were not required for catalytic activity. The conserved reiterated domains at the C-terminus of EngB were similar to those from endoglucanases from other cellulytic bacteria. According to our deletion analyses, this region is not needed for catalytic activity. 相似文献
12.
13.
Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes 总被引:2,自引:0,他引:2
Cha J Matsuoka S Chan H Yukawa H Inui M Doi RH 《Journal of microbiology and biotechnology》2007,17(11):1782-1788
Cellulosomes in Clostridium cellulovorans are assembled by the interaction between the repeated cohesin domains of a scaffolding protein (CbpA) and the dockerin domain of enzyme components. In this study, we determined the synergistic effects on cellulosic and hemicellulosic substrates by three different recombinant mini-cellulosomes containing either endoglucanase EngB or endoxylanase XynA bound to mini-CbpA with one cohesin domain (mini-CbpA1), two cohesins (mini-CbpA12), or four cohesins (mini-CbpA1234). The assembly of EngB or XynA with mini-CbpA increased the activity against carboxymethyl cellulose, acid-swollen cellulose, Avicel, xylan, and corn fiber 1.1-1.8-fold compared with that for the corresponding enzyme alone. A most distinct improvement was shown with corn fiber, a natural substrate containing xylan, arabinan, and cellulose. However, there was little difference in activity between the three different mini-cellulosomes when the cellulosomal enzyme concentration was held constant regardless of the copy number of cohesins in the cellulosome. A synergistic effect was observed when the enzyme concentration was increased to be proportional to the number of cohesins in the mini-cellulosome. The highest degree of synergy was observed with mini-CbpA1234 (1.8-fold) and then mini-CbpA12 (1.3-fold), and the lowest synergy was observed with mini-CbpA1 (1.2-fold) when Avicel was used as the substrate. As the copy number of cohesin was increased, there was more synergy. These results indicate that the clustering effect (physical enzyme proximity) of the enzyme within the mini-cellulosome is one of the important factors for efficient degradation of plant cell walls. 相似文献
14.
Heterologous expression of endo-beta-1,4-D-glucanase from Clostridium cellulovorans in Clostridium acetobutylicum ATCC 824 following transformation of the engB gene.
下载免费PDF全文

Heterologous expression of the Clostridium cellulovorans engB gene by Clostridium acetobutylicum BKW-1 was detected as zones of hydrolysis on carboxymethyl cellulose (CMC) Trypticase glucose yeast plates stained with Congo red. The extracellular cellulase preparation from C. acetobutylicum BKW-1 has a specific activity towards CMC which is more than fourfold that present in C. acetobutylicum ATCC 824. Western blot (immunoblot) analysis using the C. cellulovorans anti-EngB primary antibody demonstrated that an additional 44-kDa protein band was present in the supernatant derived from C. acetobutylicum BKW-1 but was not present in ATCC 824 or ATCC 824(pMTL500E). 相似文献
15.
R. H. Doi Jae-Seon Park Chi-chi Liu Laercio M. Malburg Jr. Yutaka Tamaru Akihiko Ichiishi Atef Ibrahim 《Extremophiles : life under extreme conditions》1998,2(2):53-60
This paper reviews the properties of the cellulosome and noncellulosome cellulases produced by Clostridium cellulovorans, an anaerobic, mesophilic, spore-forming microorganism that produces copious amounts of cellulase. The three major subunits of the cellulosome, CbpA, exoglucanase S (ExgS), and P100, are described, as well as the properties of the functional domains of CbpA. The properties of two noncellulosomal endoglucanases, EngD and EngF, are compared. The functions of the cellulose-binding domain (CBD) of CbpA indicate its potential uses in biotechnology. Received: November 18, 1997 / Accepted: November 26, 1997 相似文献
16.
Protease inhibitors (PIs) have frequently been found in cyanobacterial blooms and have been shown to affect the major herbivore Daphnia by decreasing growth and inhibiting gut protease activity. However, it has been shown that a clone of Daphnia is able to respond to dietary PIs by increasing its protease gene expression. Such an inducible response might be maternally transferred to the next generation. Therefore, we tested a tolerant clone for maternal transfer of protease gene expression. When exposed to the trypsin inhibitor-producing cyanobacterium Microcystis aeruginosa PCC7806 Mut, Daphnia mothers and their untreated newborns showed an increase in trypsin gene expression compared to naïve mothers grown on control food and their offspring. The maternally transferred increase in gene expression was accompanied by a higher somatic growth rate of the offspring generation from exposed mothers compared to offspring from naïve mothers. This higher growth rate compensated for the lower dry mass of newborns from exposed mothers and led to the same fitness as observed in the offspring of naïve mothers. In nature, clones that can maternally transfer increased protease gene expression should have an advantage over clones that cannot. The selection for such more tolerant clones by naturally occurring PIs might lead to microevolution of natural Daphnia populations, and to local adaptation in the long term. This is the first study to show an adaptive maternal transfer of increased target gene expression in an ecological context. 相似文献
17.
18.
19.
Kazuma Matsui Jungu Bae Kohei Esaka Hironobu Morisaka Kouichi Kuroda Mitsuyoshi Ueda 《Applied and environmental microbiology》2013,79(21):6576-6584
The cellulosome is a complex of cellulosomal proteins bound to scaffolding proteins. This complex is considered the most efficient system for cellulose degradation. Clostridium cellulovorans, which is known to produce cellulosomes, changes the composition of its cellulosomes depending on the growth substrates. However, studies have investigated only cellulosomal proteins; profile changes in noncellulosomal proteins have rarely been examined. In this study, we performed a quantitative proteome analysis of the whole exoproteome of C. cellulovorans, including cellulosomal and noncellulosomal proteins, to illustrate how various substrates are efficiently degraded. C. cellulovorans was cultured with cellobiose, xylan, pectin, or phosphoric acid-swollen cellulose (PASC) as the sole carbon source. PASC was used as a cellulose substrate for more accurate quantitative analysis. Using an isobaric tag method and a liquid chromatography mass spectrometer equipped with a long monolithic silica capillary column, 639 proteins were identified and quantified in all 4 samples. Among these, 79 proteins were involved in saccharification, including 35 cellulosomal and 44 noncellulosomal proteins. We compared protein abundance by spectral count and found that cellulosomal proteins were more abundant than noncellulosomal proteins. Next, we focused on the fold change of the proteins depending on the growth substrates. Drastic changes were observed mainly among the noncellulosomal proteins. These results indicate that cellulosomal proteins were primarily produced to efficiently degrade any substrate and that noncellulosomal proteins were specifically produced to optimize the degradation of a particular substrate. This study highlights the importance of noncellulosomal proteins as well as cellulosomes for the efficient degradation of various substrates. 相似文献