首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gold nanoparticles inhibited osteoclast (OC) formation induced by the receptor activator of nuclear factor-κB ligand (RANKL) in bone marrow-derived macrophages (BMMs). This was accompanied by a decreased level of tartrate-resistant alkaline phosphatase (TRAP) and less activation of nuclear factor (NF)-κB. The nanoparticles also reduced the production of reactive oxygen species (ROS) in response to RANKL and upregulated RANKL-induced glutathione peroxidase-1 (Gpx-1), suggesting a role as an antioxidant in the BMM. The inhibitory effects on OC formation might have been due to elevated defense against oxidative stress.  相似文献   

2.

Introduction  

Systemic lupus erythematosus (SLE) patients have lower bone mineral density and increased fracture risk when compared with healthy individuals, due to distinct factors and mechanisms. Bone remodeling is a tightly orchestrated process dependent on several factors, including the balance between receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG).  相似文献   

3.
Human osteoclast (OC) formation and activity was studied in cultures of peripheral blood mononuclear cells (PBMNC) from six healthy donors after stimulation with fetal calf serum (FCS), under the influence of the receptor activator of nuclear factor (NF)-κB ligand (RANKL) and the macrophage-colony stimulating factor (M-CSF). The results showed that selected FCS could stimulate OC formation without any medium supplementation with osteoclastogenic factors. The OC formation, investigated by quantification of multinucleated tartrate-resistant acid phosphatase-positive cells (TRAP+ cells), and the sensitivity of OC progenitors to RANKL and M-CSF, varied widely between individual donors. The OC resorption activity, measured in the “pit-assay” on dentine, was strictly dependent on the presence of RANKL and M-CSF in the medium and was also donor dependent. The considerable donor variability should be considered in culture studies investigating, e.g. the interactions of OC with biomaterials or the influence of cytokines, growth factors and drugs on osteoclastogenesis. An erratum to this article can be found at  相似文献   

4.
Mouse receptor activator of NF-??B ligand (RANKL), which induces osteoclastogenesis from monocytes or macrophages, was independently cloned by three groups in 1997. Mouse osteoclasts have been induced from peripheral monocytes stimulated by RANKL and macrophage colony-stimulating factor (M-CSF) both in vitro and in vivo; however, the mechanism of primate osteoclastogenesis has not been studied. In addition, the effects of human RANKL on primate osteoclastogenesis remain to be elucidated. Here, we investigated the effect of human RANKL on the osteoclastogenesis of monocytes from five subspecies of primates. Human RANKL induced osteoclastogenesis of all the primates. In addition, human RANKL induced pit formation by osteoclasts from monocytes of the crab-eating macaque. We also demonstrated that the primate osteoclastogenesis was inhibited by a novel peptide, which inhibited human osteoclastogenesis in our previous study. Thus, these findings clearly demonstrated that human RANKL induces primate osteoclastogenesis in the presence of human M-CSF.  相似文献   

5.
6.
7.
8.
9.
Linarin, a natural flavonoid glycoside widely found in plants, has been reported to possess anti-inflammation, neuroprotection and osteogenic properties. However, its impact on osteoclast remains unclear. In the present study, the effects of linarin on osteoclastogenesis and its underlying molecular mechanisms of action were investigated. Using the culture systems of osteoclasts derived from bone marrow macrophages (BMMs), we found that linarin dose-dependently inhibited osteoclasts formation and bone resorptive activity. The Cell Counting Kit-8 test displayed that the viability of cells was not influenced by linarin at doses up to 10 μg/mL. In addition, linarin downregulated osteoclast-related genes expression, including nuclear factor of activated T cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR) and c-Fos, as shown by quantitative real time polymerase chain reaction (RT-qPCR). Western blot analysis further showed that linarin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced nuclear factor kappa B (NF-κB) p65 and NFATc1 activity. The present findings show that linarin exerted a potent inhibitory effect on osteoclastogenesis through RANKL-induced NF-κB signaling pathway. In conclusion, the results suggest that linarin has anti-osteoclastic effects and may serve as potential modulatory agents for the prevention and treatment of bone loss-associated diseases.  相似文献   

10.
11.
1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] induces osteoclast formation via induction of receptor activator of NF-κB ligand (RANKL, also called TNF-related activation-induced cytokine: TRANCE) in osteoblasts. In cocultures of mouse bone marrow cells and osteoblasts, 1,25(OH)2D3 induced osteoclast formation in a dose-dependent manner, with maximum osteoclast formation observed at concentrations greater than 10?9 M of 1,25(OH)2D3. In the presence of bone morphogenetic protein 2 (BMP-2), the maximum formation of osteoclasts was seen with lower concentrations of 1,25(OH)2D3 (greater than 10?11 M), suggesting that BMP-2 enhances osteoclast formation induced by 1,25(OH)2D3. In addition, the expressions of RANKL mRNA and proteins were induced by 1,25(OH)2D3 in osteoblasts, and further upregulated by BMP-2. In mouse bone marrow cell cultures without 1,25(OH)2D3, BMP-2 did not enhance osteoclast differentiation induced by recombinant RANKL and macrophage colony-stimulating factor (M-CSF), indicating that BMP-2 does not target osteoclast precursors. Furthermore, BMP-2 up-regulated the expression level of vitamin D receptor (VDR) in osteoblasts. These results suggest that BMP-2 regulates mouse osteoclast differentiation via upregulation of RANKL in osteoblasts induced by 1,25(OH)2D3.  相似文献   

12.
Naringin (Nar) has antioxidant and anti-inflammatory properties. It was recently reported that enzymatic modification of Nar enhanced its functions. Here, we acylated Nar with fatty acids of different sizes (C2–C18) using immobilized lipase from Rhizomucor miehei and investigated the anti-inflammatory effects of these molecules. Treatment of murine macrophage RAW264.7 cells with Nar alkyl esters inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with Nar lauroyl ester (Nar-C12) showing the strongest effect. Furthermore, Nar-C12 suppressed the LPS-induced expression of inducible NO synthase by blocking the phosphorylation of inhibitor of nuclear factor (NF)-κB-α as well as the nuclear translocation of NF-κB subunit p65 in macrophage cells. Analysis of Nar-C12 uptake in macrophage cells revealed that Nar-C12 ester bond was partially degraded in the cell membrane and free Nar was translocated to the cytosol. These results indicate that Nar released from Nar-C12 exerts anti-inflammatory effects by suppressing NF-κB signaling pathway.  相似文献   

13.
14.
The prevailing view is that signaling machineries for the neurotransmitter GABA are also expressed by cells outside the CNS. In cultured murine calvarial osteoblasts, mRNA was constitutively expressed for both subunits 1 and 2 of metabotropic GABA(B) receptor (GABA(B)R), along with inhibition by the GABA(B)R agonist baclofen of cAMP formation, alkaline phosphatase (ALP) activity, and Ca(2+) accumulation. Moreover, baclofen significantly inhibited the transactivation of receptor activator of nuclear factor-κB ligand (RANKL) gene in a manner sensitive to a GABA(B)R antagonist, in addition to decreasing mRNA expression of bone morphogenetic protein-2 (BMP2), osteocalcin, and osterix. In osteoblastic MC3T3-E1 cells stably transfected with GABA(B)R1 subunit, significant reductions were seen in ALP activity and Ca(2+) accumulation, as well as mRNA expression of osteocalcin, osteopontin, and osterix. In cultured calvarial osteoblasts from GABA(B)R1-null mice exhibiting low bone mineral density in tibia and femur, by contrast, both ALP activity and Ca(2+) accumulation were significantly increased together with promoted expression of both mRNA and proteins for BMP2 and osterix. No significant change was seen in the number of multinucleated cells stained for tartrate-resistant acid phosphatase during the culture of osteoclasts prepared from GABA(B)R1-null mice, whereas a significant increase was seen in the number of tartrate-resistant acid phosphatase-positive multinucleated cells in co-culture of osteoclasts with osteoblasts isolated from GABA(B)R1-null mice. These results suggest that GABA(B)R is predominantly expressed by osteoblasts to negatively regulate osteoblastogenesis through down-regulation of BMP2 expression toward disturbance of osteoclastogenesis after down-regulation of RANKL expression in mouse bone.  相似文献   

15.
《Phytomedicine》2014,21(8-9):1032-1036
Puerarin, a daidzein-8-C-glucoside, is the major isoflavone glycoside found in the Chinese herb radix of Pueraria lobata (Willd.) Ohwi, and has received increasing attention because of its possible role in the prevention of osteoporosis. In our previous studies, puerarin reduced the bone resorption of osteoclasts and promoted long bone growth in fetal mouse in vitro. Further study confirmed that puerarin stimulated proliferation and differentiation of osteoblasts in rat. However, the mechanisms underlying its actions on human bone cells have remained largely unknown. Here we show that puerarin concurrently stimulates osteoprotegerin (OPG) and inhibits receptor activator of nuclear factor-κB ligand (RANKL) and Interleukin-6 (IL-6) production by human osteoblastic MG-63 cells containing two estrogen receptor (ER) isotypes. Treatment with the ER antagonist ICI 182,780 abrogates the above actions of puerarin on osteoblast-derived cells. Using small interfering double-stranded RNAs technology, we further demonstrate that the effects of puerarin on OPG and RANKL expression are mediated by both ERα and ERβ but those on IL-6 production primarily by ERα. Moreover, we demonstrate that puerarin may promote activation of the classic estrogen response element (ERE) pathway through increasing ERα, ERβ and steroid hormone receptor coactivator (SRC)-1 expression. Therefore, puerarin will be a promising agent that prevents or retards osteoporosis.  相似文献   

16.
17.
Osteolytic lesions are rapidly progressive during the terminal stages of myeloma, and the bone pain or bone fracture that occurs at these lesions decreases the patients’ quality of life to a notable degree. In relation to the etiology of this bone destruction, it has been reported recently that MIP-1α, produced in large amounts in myeloma patients, acts indirectly on osteoclastic precursor cells, and activates osteoclasts by way of bone-marrow stromal cells or osteoblasts, although the details of this process remain obscure. In the present study, our group investigated the mechanism by which RANKL expression is induced by MIP-1α and the effects of MIP-1α on the activation of osteoclasts. RANKL mRNA and RANKL protein expressions increased in both ST2 cells and MC3T3–E1 cells in a MIP-1α concentration-dependent manner. RANKL mRNA expression began to increase at 1 h after the addition of MIP-1α; the increase became remarkable at 2 h, and continuous expression was observed subsequently. Both ST2 and MC3T3-E1 cells showed similar levels of increased RANKL protein expression at 1, 2, and 3 days after the addition of MIP-1α. After the addition of MIP-1α, the amount of phosphorylated ERK1/2 and Akt protein expressions showed an increase, as compared to the corresponding amount in the control group. On the other hand, the amount of phosphorylated p38MAPK protein expression showed a decrease from the amount in the control group after the addition of MIP-1α. U0126 (a MEK1/2 inhibitor) or LY294002 (a PI3K inhibitor) was added to ST2 and MC3T3-E1 cells, and was found to inhibit RANKL mRNA and RANKL protein expression in these cells. When SB203580, a p38MAPK inhibitor, was added, RANKL mRNA and RANKL protein expression were increased in these cells. MIP-1α was found to promote osteoclastic differentiation of C7 cells, an osteoclastic precursor cell line, in a MIP-1α concentration-dependent manner. MIP-1α promoted differentiation into osteoclasts more extensively in C7 cells incubated together with ST2 and MC3T3-E1 cells than in C7 cells incubated alone. These results suggested that MIP-1α directly acts on the osteoclastic precursor cells and induces osteoclastic differentiation. This substance also indirectly induces osteoclastic differentiation through the promotion of RANKL expression in bone-marrow stromal cells and osteoblasts. The findings of this investigation suggested that activation of the MEK/ERK and the PI3K/Akt pathways and inhibition of p38MAPK pathway were involved in RANKL expression induced by MIP-1α in bone-marrow stromal cells and osteoblasts. This finding may be useful in the development of an osteoclastic inhibitor that targets intracellular signaling factors.  相似文献   

18.
19.
A series of cinnolines/quinolines was prepared and it was found that 4-phenyl-cinnoline/quinolines with either a 2′,3′ or 2′,5′-disubstituted benzyloxy moiety or the 1-Me-7-indole methoxy moiety on the meta position of the 4-phenyl ring showed good binding selectivity for LXRβ over LXRα. The LXRβ binding selective modulators displayed good activity for inducing ABCA1 gene expression in J774 macrophage cell line and poor efficacy in the LXRα Gal4 functional assay. 26, 37 and 41 were examined for their ability to induce SREBP-1c gene expression in Huh-7 liver cell line and they were weak partial agonists.  相似文献   

20.
Osteopetrosis belongs to a group of rare genetic diseases typically treated with bone marrow transplantation. This approach is not effective in a recently identified form of the disease caused by mutations in the receptor activator of NF-κB ligand (RANKL) gene. In these patients, replacement therapy and RANKL delivery may be a more valid approach than transplantation. Here, we describe the construction of a recombinant gene encoding regions of RANKL (rRANKL), including the biologically active regional loop sequence. We present detailed methods for the cloning, expression, and purification of the recombinant protein. The activity of rRANKL including the active region was assessed in vitro and mature osteoclast generation was evaluated in vivo using a mouse model. We provide a proof of concept for the therapeutic potential of full-length and selected active regions of rRANKL in the treatment of osteopetrosis, warranting clinical assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号