首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In order to analyze the complex activities of histamine H2 receptor activation on neutrophils, human HL-60 promyelocytic leukemia cells were differentiated into neutrophils by incubation with dimethyl sufoxide, loaded with the Ca2+-sensitive indicator dyes, indo-1 or fura-2, and the levels of intracellular Ca2+ ([Ca2+]i) measured in a fluorescent-activated cell sorter and fluorimeter, respectively. Histamine increased [Ca2+]i in a dose-dependent manner with a half-maximal concentration (EC50) of approximately 10(-6) to 10(-5) M, which exhibited H2 receptor specificity. Prostaglandin E2 and isoproterenol also induced [Ca2+]i mobilization in HL-60 cells, whereas the cell permeable form of cAMP and forskolin failed to increase [Ca2+]i. Since H2-receptor mediated [Ca2+]i mobilization was not inhibited by reducing the concentration of extracellular Ca2+ nor by the addition of Ca2+ channel antagonists, LaCl3 and nifedipine, [Ca2+]i mobilization is due to the release of Ca2+ from intracellular stores. Furthermore, both 10(-4) M histamine and 10(-6) M fMet-Leu-Phe increased the levels of 1,4,5-inositol trisphosphate. However, histamine-induced mobilization of [Ca2+]i was inhibited by cholera toxin but not by pertussis toxin, whereas the action of fMet-Leu-Phe was inhibited by pertussis toxin but not by cholera toxin. These data suggest that H2 receptors on HL-60 cells are coupled to two different cholera toxin-sensitive G-proteins and activate adenylate cyclase and phospholipase C simultaneously.  相似文献   

2.
The signal transduction mechanisms involved in the regulation of phagocytosis are largely unknown. We have recently shown that in neutrophils, when IgG-mediated phagocytosis is stimulated by formyl-methionyl-leucyl-phenyl-alanine (fMLP), the enhanced ingestion is dependent on the increase in [Ca2+]i which results from ligation of Fc receptors by the IgG-coated target (Rosales, C., and Brown, E. (1991) J. Immunol. 146, 3937-3944). Now, we have studied the mechanism by which this rise in [Ca2+]i occurs. Aggregated IgG, the monoclonal antibody 3G8 (which recognizes Fc receptor type III), and insoluble immune complexes caused an increase in [Ca2+]i. The rise in [Ca2+]i induced by Fc receptor ligation was resistant to pertussis toxin. In contrast, fMLP induced a rise in [Ca2+]i which was inhibited by pertussis toxin. fMLP-induced [Ca2+]i was accompanied by an accumulation of inositol 1,4,5-trisphosphate (IP3) which peaked by 15 s, and which was also abolished by pertussis toxin. IP3 accumulation after aggregated IgG, 3G8, or insoluble immune complexes was much less than after fMLP. Unlike [Ca2+]i rise induced by Fc receptor ligation, this small increase in IP3 was inhibited by pertussis toxin. These data demonstrated that the [Ca2+]i increase induced by Fc receptor ligation is not mediated by IP3. Immediate pretreatment of human polymorphonuclear neutrophils with optimal doses of fMLP also reduced subsequent increase in [Ca2+]i rise from thapsigargin, a sesquiterpene lactone tumor promoter that releases intracellular Ca2+ from IP3-sensitive stores without IP3 turnover. Similarly, to its effects on thapsigargin, fMLP inhibited the [Ca2+]i rise upon subsequent immune complex binding. Pretreatment of cells with immune complexes also prevented subsequent [Ca2+]i rise from thapsigargin and fMLP. These data demonstrate that IgG Fc receptor ligation and fMLP activation of human polymorphonuclear neutrophils use distinct signal transduction mechanisms to release Ca2+ from the same thapsigargin-sensitive intracellular pool. In contrast to fMLP, signal transduction for increased [Ca2+]i after Fc receptor stimulation does not involve a pertussis toxin-sensitive G protein, and is independent of IP3.  相似文献   

3.
The effects of galanin and somatostatin on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration [( Ca2+]i) were investigated using beta-cells isolated from obese hyperglycemic mice. Whereas insulin release was measured in a column perifusion system, membrane potential and [Ca2+]i were measured with the fluorescent indicators bisoxonol (bis-(1,3-diethylthiobarbiturate)trimethineoxonol) and quin 2, in cell suspensions in a cuvette. Galanin (16 nM) and somatostatin (400 nM) suppressed glucose-stimulated insulin release in parallel to promoting repolarization and a reduction in [Ca2+]i. The reduction in [Ca2+]i comprised an initial nadir followed by a slow rise and the establishment of a new steady state level. The slow rise in [Ca2+]i was abolished by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. Both peptides suppressed insulin release even when [Ca2+]i was raised by 25 mM K+. Under these conditions the inhibition of insulin release was partly reversed by an increase in the glucose concentration. Addition of 5 mM Ca2+ to a cell suspension, incubated in the presence of 20 mM glucose and either galanin, somatostatin, or the alpha 2-adrenergic agonist clonidine (10 nM), induced oscillations in [Ca2+]i, this effect disappearing subsequent to the addition of D-600. The effects of galanin, somatostatin, and clonidine on [Ca2+]i were abolished in beta-cells treated with pertussis toxin. In accordance with measurements of [Ca2+]i, treatment with pertussis toxin reversed the inhibitory effect of galanin on insulin release. The inhibitory action of galanin and somatostatin on insulin release is probably accounted for by not only a repolarization-induced reduction in [Ca2+]i and a decreased sensitivity of the secretory machinery to Ca2+, but also by a direct interaction with the exocytotic process. It is proposed that these effects are mediated by a pertussis toxin-sensitive GTP-binding protein.  相似文献   

4.
Platelet-derived growth factor (PDGF) and angiotensin II (AII) are thought to mediate their biological effects in vascular smooth muscle cells (VSMCs) by causing alterations in cytosolic free calcium ([ Ca2+]i). In this study we examine the pathways by which PDGF and AII alter [Ca2+]i in VSMCs. Addition of PDGF resulted in a rapid, transient, concentration-dependent increase in [Ca2+]i; this rise in [Ca2+]i was blocked completely by preincubation of cells with ethylene glycol-bis (beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) or CoCl2, by the voltage-sensitive Ca2+-channel antagonists verapamil or nifedipine, by 12-O-tetradecanoylphorbol-13-acetate (TPA), or by pertussis toxin. AII also caused an increase in [Ca2+]i; however, AII-stimulated alterations in [Ca2+]i displayed different kinetics compared with those caused by PDGF. Pretreatment of cells with 8-(diethylamine)-octyl-3,4,5-trimethyoxybenzoate hydrochloride (TMB-8), almost totally inhibited AII-induced increases in [Ca2+]i. EGTA or CoCl2 only slightly diminished AII-stimulated increases in [Ca2+]i. Nifedipine, verapamil, TPA, and pertussis toxin pretreatment were without effect on AII-induced increases in [Ca2+]i. PDGF and AII both stimulated increases in total inositol phosphate accumulation, although the one-half maximal concentration (ED50) for alterations in [Ca2+]i and phosphoinisitide hydrolysis differed by a factor of 10 for PDGF (3 X 10(-10) M for Ca2+ vs. 2.5 X 10(-9) M for phosphoinositide hydrolysis), but they were essentially identical for AII (7.5 X 10(-9) M for Ca2+ vs. 5.0 X 10(-9) M for phosphoinositide hydrolysis). PDGF stimulated mitogenesis (as measured by [3H]-thymidine incorporation into DNA) in VSMCs with an ED50 similar to that for PDGF-induced alterations in phosphoinositide hydrolysis. PDGF-stimulated mitogenesis was blocked by pretreatment of cells with voltage-sensitive Ca2+ channel blockers, TPA, or pertussis toxin. These results suggest that PDGF and AII cause alterations in [Ca2+]i in VSMCs by at least quantitatively distinct mechanisms. PDGF binding activates a pertussis-toxin-sensitive Ca2+ influx into cells via voltage-sensitive Ca2+ channels (blocked by EGTA, verapamil, and nifedipine), as well as stimulating phosphoinositide hydrolysis leading to release of Ca2+ from intracellular stores. AII-induced alterations in [Ca2+]i are mainly the result of phosphoinositide hydrolysis and consequent entry of Ca2+ into the cytoplasm from intracellular stores. Our data also suggest that changes in [Ca2+]i caused by PDGF are required for PDGF-stimulated mitogenesis.  相似文献   

5.
Using the fluorescent Ca2+ probe Quin-2 it has been reported that cholera toxin (CT) and its B subunit (B-CT) increase cytosolic free Ca2+ concentration ([Ca2+]i) in entherocytes, thymocytes and fibroblasts. In this work we show, however, that the fluorescence increases of Quin-2-loaded cells (rat thymocytes, mouse splenocytes, P-388 macrophages and 3T3 fibroblasts) observed upon addition of CT or B-CT are not caused by an increase in [Ca2+]i. The observed effect appears to be accounted for by EDTA-2Na admixtures (present as conservation agent in all CT and B-CT preparations) which 'unquenches' the fluorescence of Quin-2 acid leaked out from the cells into the extracellular medium and produces influorescent complexes with contaminating heavy metal ions. Thus the mitogenic effect of B-CT is not obviously connected with the cytosolic free Ca2+ increase but is probably due to ganglioside-mediated protein phosphorylation.  相似文献   

6.
We investigated the action of cholera toxin on the intracellular ionized calcium [Ca2+]i increase induced by anti-CD2 and anti-CD3 monoclonal antibodies in the leukemic human T-cell line Jurkat. Cholera toxin inhibits in a dose-dependent manner these two pathways of human T-lymphocyte activation but with different half maximal inhibition doses (75 ng/ml for CD3, 30 ng/ml for CD2). This effect cannot be accounted for only by the increase in cAMP induced by cholera toxin because forskolin, which raises cellular cyclic adenosine monophosphate (cAMP) to the same levels, induced only a small inhibition of the [Ca2+]i increase in similar conditions. Cholera toxin induced a decrease in the surface expression of the CD3 molecule, suggesting a down-regulation of the CD3 molecules. On the other hand, the expression of CD2 remained unchanged. Cell surface disappearance of the CD3 molecule cannot account for all the inhibitory effects of cholera toxin because CD2 molecule expression was not affected (no modifications in the half maximal binding of anti-CD2 monoclonal antibodies). All together, these results suggest that cholera toxin acts on substrates, possibly G proteins, that could regulate the [Ca2+]i increase induced by anti-CD2 and anti-CD3 mAbs in Jurkat cells. In addition, the present study demonstrated that the rise in cellular cAMP partially inhibits the [Ca2+]i increase induced by anti-CD2 and anti-CD3 mAbs.  相似文献   

7.
Neutrophil-like HL-60 cells reacted to N -formyl- l -Methionyl- l -Leucyl- l -P henylalanine (f MLP) with a rise in the intracellular calcium concentration ([Ca2]i), NADPH oxidase activation, and increased superoxide anion (O2-) production. [Ca2+]i mobilization and superoxide production were largely dependent on extracellular calcium (Ca2+]e) and a capacitative calcium entry. The monomeric G-protein, Rac-1, regulates NADPH oxidase activity. We tested the effect of removal of Ca2+]e on Rac-1 plasma membrane sequestration and activation of NADPH oxidase using immunodetection and a double labelling fluorescent method. Results showed that Rac-1 activation is mediated via a pertussis toxin (PTX)-sensitive heteromeric G-protein pathway, and that Rac-1 membrane sequestration was preceded by [Ca2+]i mobilization following entry of Ca2+ e. Therefore, we propose that O2- production is dependent on activation of PTX-sensitive G-proteins and sequestration of Rac-1 in the plasma membrane, following entry of Ca2+ e.  相似文献   

8.
When SK-N-SH human neuroblastoma cells were exposed to nicotine (NIC) or KCl they showed a dose-dependent transient increase (2- to 4-fold) in intracellular Ca2+ concentration ([Ca2+])i as detected by quin-2 fluorescence, with half maximal effects (EC50) observed at 13 microM and 26 mM, respectively. Tubocurarine and 1-isodihydrohistrionicotoxin potently blocked the NIC-evoked (IC50 congruent to 1 microM and 0.3 microM, respectively), but not the high [K+]o-evoked [Ca2+]i accumulation. The KCl-induced response was inhibited by verapamil and diltiazem (IC50 = 1.4 and 10.9 microM, respectively). Tetrodotoxin (3 microM) and tetraethylammonium (10 microM) had no effect on [Ca2+]i accumulation induced by either agent. Increases in [Ca2+]i could be evoked sequentially by NIC and KCl in the same cells suggesting independent mechanisms of Ca2+ entry. In a Ca2+-free medium, no response to either KCl or NIC was observed. However, when Ca2+ ions were restored, [Ca2+]i accumulation was enhanced to the same extent as cells suspended in a Ca2+-containing buffer. Long-term (18 hr) pretreatment of SK-N-SH cells with pertussis (100 ng/ml) or cholera toxins (10 nM) had no effect on NIC or KCl-induced [Ca2+]i accumulation. Together, these data demonstrate the presence of NIC receptors and voltage-sensitive Ca2+ channels on SK-N-SH neuroblastoma cells, through which [Ca2+]i may be modulated.  相似文献   

9.
10.
Effects of interleukin (IL) on intracellular free Ca2+ concentration ([Ca2+]i) rise and catecholamine (CA) release were examined in isolated, cultured bovine adrenal chromaffin cells. IL-1alpha and IL-1beta inhibited the rise of [Ca2+]i and CA release induced by acetylcholine (ACh) and excess KCl both in normal and in Ca2+-sucrose medium. Pretreatment by IL-1 receptor antagonist (IL-1RA) blocked the inhibitory actions of IL-1alpha. IL-1alpha reduced CA release induced by veratridine in normal medium but not in the presence of diltiazem. Analysis using specific blockers for voltage-operated Ca2+ channels (VOCC) revealed that IL-1alpha and IL-1beta specifically inhibited the P/Q-type Ca2+ channel to reduce [Ca2+]i rise induced by excess KCl. IL-1 did not affect [Ca2+]i rise induced either by bradykinin or caffeine in Ca2+-deprived medium or via activation of store-operated Ca2+ channel (SOC). The inhibitory effects of IL-1alpha were blocked by pretreatments with herbimycin A, U0126 and PD 98054, but not with SB202190, SP 600125 or pertussis toxin (PTX). These results demonstrated that IL-1 inhibits stimulation-evoked [Ca2+]i rise and CA release in chromaffin cells by blocking voltage-operated P/O-type Ca2+ channels. The inhibitory action of IL-1 may be mediated through the tyrosine kinase and MEK/ERK pathways.  相似文献   

11.
Inositol trisphosphate (InsP3) production and cytosolic free Ca2+ ([Ca2+]i) elevations induced by leukotriene B4 (LTB4)-receptor activation were studied in the human promyelocytic-leukaemia cell line HL60, induced to differentiate by retinoic acid. The myeloid-differentiated HL60 cells respond to LTB4 by raising their [Ca2+]i with a dose-response relationship similar to that shown by normal human neutrophils. The observations of the LTB4 transduction mechanism were compared with those of the transduction mechanism of the chemotactic peptide fMet-Leu-Phe in HL60 cells differentiated with dimethyl sulphoxide. Both LTB4 and fMet-Leu-Phe triggered a rapid (less than 5 s) elevation of [Ca2+]i, which occurred in parallel with the InsP3 production from myo-[3H]inositol-labelled cells. The threshold concentrations of the agonists, for InsP3 production, were found at 10(-9) M, a slightly higher concentration than that required to detect [Ca2+]i elevations. No significant changes were noted in the phosphoinositide levels upon stimulation with LTB4. Exposure to Bordetella pertussis toxin before LTB4 stimulation abolished both the increased formation of InsP3 and the rise of [Ca2+]i. LTB4 and fMet-Leu-Phe elicited elevations of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] with no detectable lag time, followed by slower and more sustained inositol 1,3,4-trisphosphate elevations. Stimulation with various leukotriene analogues revealed a good correlation between both total InsP3 as well as Ins(1,4,5)P3 formation and elevations of [Ca2+]1. Thus LTB4 receptor activation results in an increased production of Ins(1,4,5)P3 via a transduction mechanism also involving a nucleotide regulatory protein, as previously described for the fMet-Leu-Phe transduction mechanism.  相似文献   

12.
We have studied the activation of the Na+/H+ exchanger which leads to the intracellular alkalinization in cultured bovine aortic endothelial cells stimulated by extracellular ATP. The alkalinization induced by ATP was largely dependent on extracellular Ca2+ and the rate of alkalinization was decreased by about 60% in the absence of extracellular Ca2+. ATP caused a rapid and transient increase and a subsequent sustained increase of the intracellular Ca2+ concentration ([Ca2+]i) in the Ca2+ buffer, while only the rapid and transient increase of [Ca2+]i was observed in the absence of extracellular Ca2+. The Ca2+-depleted cells prepared by incubation in Ca2+-free buffer containing 0.1 mM EGTA showed only a slight increase of [Ca2+]i with no alkalinization on stimulation by ATP. The alkalinization was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), an inhibitor of protein kinase C, but not by another isoquinoline analogue (HA 1004), which has a less inhibitory effect on the kinase. Phorbol 12-myristate 13-acetate also induced the alkalinization by the activation of the Na+/H+ exchanger. Neither dibutyryl cyclic AMP nor dibutyryl cyclic GMP affected the alkalinization induced by ATP. Treatment of the cells by pertussis and cholera toxins had no effect on the alkalinization. The results suggest that the increase in [Ca2+]i is essential for the ATP-induced activation of the Na+/H+ exchanger in cultured bovine aortic endothelial cells and a protein kinase C-dependent pathway is involved in the activation.  相似文献   

13.
The relationship between calcium mobilization and phospholipase D (PLD) activation in response to E-series prostaglandins (PGEs) was investigated in human erythroleukemia cells. Intracellular free Ca2+ concentration ([Ca2+]i) was increased by PGE1 and PGE2 over the same concentration range at which PLD activation was seen. Pretreatment of cells with pertussis toxin greatly inhibited the PGE-stimulated increase in [Ca2+]i, implying that a G protein participates in the PGE receptor signaling process. The peak level and also the plateau level of Ca2+ mobilization stimulated by these prostaglandins were markedly decreased in Ca(2+)-depleted medium, indicating that both extracellular and intracellular Ca2+ stores contribute to the changes in [Ca2+]i. Likewise, activation of PLD by PGE1 and PGE2 was abolished by pertussis toxin pretreatment or incubation in Ca(2+)-depleted medium. U73122, a putative phospholipase C inhibitor, blocked both Ca2+ mobilization and PLD activation in PGE-stimulated cells. Furthermore, the intracellular loading of BAPTA, a Ca2+ chelator, inhibited both Ca2+ mobilization and PLD activation by PGE1 and PGE2 in a similar dose-dependent manner. Simultaneous measurement of [Ca2+]i and PLD activity in the same cell samples indicated that PLD activity increases as a function of [Ca2+]i in a similar fashion in cells stimulated either by PGEs or by the calcium ionophore ionomycin. Taken together, these findings suggest that a rise in [Ca2+]i is necessary for PGE-stimulated PLD activity in human erythroleukemia cells.  相似文献   

14.
The effect of neuropeptide Y (NPY) on cytosolic free Ca2+ concentration ([Ca2+]i) was studied in cultured smooth muscle cells from porcine aorta (PASMC) and compared with the effect of bradykinin (BK) and angiotensin II (ATII) on [Ca2+]i. All peptides induced dose-dependent and transient rises in [Ca2+]i which were not blocked by extracellular EGTA, but the NPY response was different from the others' as follows. First, the [Ca2+]i rise induced by NPY was not as rapid as that induced by BK or ATII. Second, pertussis toxin abolished the [Ca2+]i rise induced by NPY, but not by BK or ATII. Third, following initial treatment with BK, PASMC were able to respond to NPY, but not to ATII. Finally, BK and ATII, but not NPY, significantly increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) generation. Although NPY attenuated forskolin-induced accumulation of cyclic AMP, forskolin- and 3-isobutyl-1-methyl-xanthine-induced alterations in intracellular cyclic AMP did not affect the NPY-induced [Ca2+]i rise. These results suggest that NPY increases [Ca2+]i by a pertussis toxin-sensitive GTP binding protein-involved mechanism which is not mediated by the intracellular messengers such as Ins(1,4,5)P3 and cyclic AMP.  相似文献   

15.
The membrane signaling properties of the neuronal type-5 muscarinic acetylcholine receptor (M5 AChR) as expressed in murine L cells were studied. Recipient Ltk- cells responded to ATP acting through a P2-purinergic receptor by increasing phosphoinositide hydrolysis 2-fold but were unresponsive to 17 receptor agonists that are stimulatory in other cells. L cells expressing the M5 AChR responded to carbachol (CCh) with an approximately 20-fold increase in phospholipase C activity, mobilization of Ca2+ from endogenous stores, causing a transient peak increase in the intracellular concentration of Ca2+ ([Ca2+]i), influx of extracellular Ca2+, causing a sustained increase in [Ca2+]i dependent on extracellular Ca2+, and release of [3H]arachidonic acid from prelabeled cells, without altering resting or prostaglandin E1-elevated intracellular cAMP levels. None of the effects of the M5 AChR were inhibited by pertussis toxin. The regulation of L cell [Ca2+]i was studied further. ATP had the same effects as CCh and the two agonists acted on a shared intracellular pool of Ca2+. The peak and sustained [Ca2+]i increases were reduced by cholera toxin and forskolin, neither of which altered significantly phosphoinositide hydrolysis. This is consistent with interference with the action of inositol 1,4,5-trisphosphate (IP3) through cAMP-mediated phosphorylation and suggests a continued involvement of IP3 during the sustained phase of [Ca+]i increases. The temporal pattern of the sustained [Ca2+]i increase differed whether elicited by CCh or ATP, and was enhanced in pertussis toxin-treated cells. This is consistent with existence of a kinetic control of the sustained [Ca2+]i change by a receptor-G protein-dependent mechanism independent of the IP3 effector site(s) (e.g. pulsatile activation of phospholipase C and/or pulsatile activation of a receptor/G protein-operated plasma membrane Ca2+ channel). Thus, the non-excitable L cell may be a good model for studying [Ca2+]i regulations, as may occur in other nonexcitable cells of which established cell lines do not exist, and for studying of receptors that as yet cannot be studied in their natural environment.  相似文献   

16.
Huang HM  Ou HC  Hsieh SJ  Chiang LY 《Life sciences》2000,66(16):1525-1533
Amyloid beta protein (Abeta) alters signal transduction systems, including increases in the cytosolic free calcium ([Ca2+]i) response which have pathophysiological significance in Alzheimer's disease (AD). The purposes of this study were to elucidate the mechanism involved in Abeta's effect on the Ca2+ signal and to evaluate the effect of fullerenol-1, a water-soluble hydroxyl and superoxide radical scavenger, on the Abeta-induced Ca2+ response. Both Abeta and bradykinin (BK) dose-dependently elevated [Ca2+]i in PC12 cells. Fullerenol-1, at a concentration range between 100 nM and 1 microM, dose-dependently reduced the Abeta-induced [Ca2+]i response, but did not alter the subsequent BK-mediated process. Thapsigargin, an inhibitor of Ca2+-ATPase, released Ca2+ from the internal store and diminished the BK-mediated calcium spike but did not affect the Abeta-induced Ca2+ response. In the absence of extracellular calcium, the Abeta-induced, but not BK-induced, calcium spike was completely abolished. The Ca induced by Abeta did not enter through the voltage-dependent calcium channels or ligand gated calcium channels, because the peak of Abeta-evoked Ca2+ was not significantly altered by various Ca2+ channel blockers or a NMDA receptor antagonist MK801. In addition, neither cholera toxin nor pertussis toxin altered the Abeta-induced Ca response. The results demonstrated that Abeta-stimulated [Ca2+]i increase is due to Ca influx from an extracellular source rather than from the intracellular store. Alteration of the membrane lipid structure and permeability by free radicals generated by Abeta may be a major cause of Ca -influx. Furthermore, fullerenol-1, a novel antioxidant, may provide therapeutic benefits in neurodegenerative diseases such as AD.  相似文献   

17.
Single rat lactotroph cells were studied after loading with the cytosolic free Ca2+ concentration ([Ca2+]i) indicator fura-2 either 1 or 3 days after cell dispersion. Under unstimulated conditions, two groups of lactotrophs were observed, the first (predominant at day 1) with large [Ca2+]i fluctuations (peaks up to 300 nM) probably due to spontaneous action potentials and the second (predominant at 3 days) with stable [Ca2+]i (values variable between 65 and 200 nM). The effect of dopamine on the resting [Ca2+]i was different in the two groups. Even at high dopamine concentrations, no change occurred in the second group; whereas in the first, disappearance of fluctuations and marked decrease of [Ca2+]i were observed. These effects of dopamine appear to be due to hyperpolarization that was demonstrated by the use of a specific fluorescent indicator, bis(oxonol). Two types of triggered [Ca2+]i transients were studied in detail: those due to redistribution of Ca2+ from the intracellular stores (induced by thyrotropin-releasing hormone) and those due to Ca2+ influx through voltage-gated Ca2+ channels (induced by high [K+]). Dopamine (1 microM) markedly inhibited both these transients by the action of D2 receptors (blocked by 1-sulpiride and domperidone). All effects of dopamine were prevented by treatment of the cells with pertussis toxin, indicating the involvement of one (or more) GTP-binding protein(s). Another consequence of D2 receptor activation is the inhibition of adenylate cyclase. Treatments (cholera toxin, forskolin), known to raise cAMP levels, were found to dissociate the effects of dopamine on [Ca2+]i inasmuch as they markedly relieved the inhibition of the redistributive transients by thyrotropin-releasing hormone but left hyperpolarization and inhibition of K+ transients unaffected. The spectrum of intracellular signals elicited by the activation of D2 receptors is therefore complex and includes at least two mechanisms that involve [Ca2+]i, one related and the other independent of the decrease of cAMP levels.  相似文献   

18.
M3 muscarinic receptors expressed on SH-SY5Y human neuroblastoma cells are linked to phosphoinositide turnover and rises in [Ca2+]i. The rise in [Ca2+]i is biphasic with the peak phase being due to release from an intracellular Ins(1,4,5)P3-sensitive site and the plateau phase being due to Ca2+ entry across the plasma membrane. Ca2+ entry does not appear to involve voltage sensitive Ca2+ channels, a pertussis toxin sensitive G-protein-operated Ca2+ channel or Ins(1,4,5)P3/Ins(1,3,4,5)P4-operated Ca2+ channel. We suggest that carbachol-stimulated Ca2+ entry in SH-SY5Y human neuroblastoma cells occurs via receptor operated Ca2+ channels and through capacitive refilling.  相似文献   

19.
The effect of hyperoxia on the Ca2+ dependence of stimulated superoxide anion radical (O2-.) production (the respiratory burst) of rat alveolar macrophages was investigated. Enhancement of the concanavalin A (con A)-stimulated respiratory burst by extracellular Ca2+ was suppressed by O2 exposure. Similarly, the inhibitory effect of verapamil on the con A-stimulated respiratory burst was reduced by O2 exposure. O2 exposure also inhibited con A stimulation that was independent of Ca2+ entry. Exposure to O2 also caused a decline in O2-. production stimulated by either A23187 or phorbol myristate acetate (PMA). With A23187 stimulation, extracellular Ca2+ was essential for either air-exposed (control) or O2-exposed cells. With PMA, stimulation was independent of extracellular Ca2+ for either air or O2-exposed macrophages and verapamil did not inhibit. Free intracellular Ca2+ concentration ([Ca2+]i) was measured in control and O2-exposed alveolar macrophages. Hyperoxic exposure did not alter [Ca2+]i in unstimulated cells. In controls, con A stimulated an immediate increase in [Ca2+]i followed by a rapid decrease and a second rise and fall. The second elevation was suppressed by verapamil or ethyleneglycol-bis (beta-aminoethylether)-N,N'-tetraacetic acid or O2 exposure. The results of both the respiratory burst assays and measurement of con A-stimulated changes in [Ca2+]i suggest that Ca2+ entry involved in stimulus-response coupling is suppressed in cellular O2 toxicity.  相似文献   

20.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号