首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More than 12 % of bird species are threatened with extinction. Numerous anthropogenic activities and processes are considered responsible for such declines, including tourism related activities. These activities often occur in global biodiversity hotspots but few studies consider the potential risks associated with tourism. The relative importance of tourism as a threat to birds was quantified using a global analysis of the threats facing critically endangered and endangered birds in the hotspots. Sixty-three critically endangered and endangered bird species are reportedly threatened by tourism. Among those 63 species, marine, coastal and aquatic birds are threatened more by tourism than was expected. Hotspots with the most species threatened by tourism are Polynesia–Micronesia and the Mediterranean Basin. This study uses individual threatening processes in a new way to characterise hotspots for conservation action, advancing previous identification criteria. Analysing hotspots in terms of the relative presence of individual threatening processes may help to more effectively direct future research in these priority regions.  相似文献   

2.
Primates are facing an impending extinction crisis, driven by extensive habitat loss, land use change and hunting. Climate change is an additional threat, which alone or in combination with other drivers, may severely impact those taxa unable to track suitable environmental conditions. Here, we investigate the extent of climate and land use/cover (LUC) change‐related risks for primates. We employed an analytical approach to objectively select a subset of climate scenarios, for which we then calculated changes in climatic and LUC conditions for 2050 across primate ranges (N = 426 species) under a best‐case scenario and a worst‐case scenario. Generalized linear models were used to examine whether these changes varied according to region, conservation status, range extent and dominant habitat. Finally, we reclassified primate ranges based on different magnitudes of maximum temperature change, and quantified the proportion of ranges overall and of primate hotspots in particular that are likely to be exposed to extreme temperature increases. We found that, under the worst‐case scenario, 74% of Neotropical forest‐dwelling primates are likely to be exposed to maximum temperature increases up to 7°C. In contrast, 38% of Malagasy savanna primates will experience less pronounced warming of up to 3.5°C. About one quarter of Asian and African primates will face up to 50% crop expansion within their range. Primary land (undisturbed habitat) is expected to disappear across species' ranges, whereas secondary land (disturbed habitat) will increase by up to 98%. With 86% of primate ranges likely to be exposed to maximum temperature increases >3°C, primate hotspots in the Neotropics are expected to be particularly vulnerable. Our study highlights the fundamental exposure risk of a large percentage of primate ranges to predicted climate and LUC changes. Importantly, our findings underscore the urgency with which climate change mitigation measures need to be implemented to avert primate extinctions on an unprecedented scale.  相似文献   

3.
Few regions have been more severely impacted by climate change in the USA than the Desert Southwest. Here, we use ecological genomics to assess the potential for adaptation to rising global temperatures in a widespread songbird, the willow flycatcher (Empidonax traillii), and find the endangered desert southwestern subspecies (E. t. extimus) most vulnerable to future climate change. Highly significant correlations between present abundance and estimates of genomic vulnerability – the mismatch between current and predicted future genotype–environment relationships – indicate small, fragmented populations of the southwestern willow flycatcher will have to adapt most to keep pace with climate change. Links between climate‐associated genotypes and genes important to thermal tolerance in birds provide a potential mechanism for adaptation to temperature extremes. Our results demonstrate that the incorporation of genotype–environment relationships into landscape‐scale models of climate vulnerability can facilitate more precise predictions of climate impacts and help guide conservation in threatened and endangered groups.  相似文献   

4.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

5.
Predicting changes in potential habitat for endangered species as a result of global warming requires considering more than future climate conditions; it is also necessary to evaluate biotic associations. Most distribution models predicting species responses to climate change include climate variables and occasionally topographic and edaphic parameters, rarely are biotic interactions included. Here, we incorporate biotic interactions into niche models to predict suitable habitat for species under altered climates. We constructed and evaluated niche models for an endangered butterfly and a threatened bird species, both are habitat specialists restricted to semiarid shrublands of southern California. To incorporate their dependency on shrubs, we first developed climate‐based niche models for shrubland vegetation and individual shrub species. We also developed models for the butterfly's larval host plants. Outputs from these models were included in the environmental variable dataset used to create butterfly and bird niche models. For both animal species, abiotic–biotic models outperformed the climate‐only model, with climate‐only models over‐predicting suitable habitat under current climate conditions. We used the climate‐only and abiotic–biotic models to calculate amounts of suitable habitat under altered climates and to evaluate species' sensitivities to climate change. We varied temperature (+0.6, +1.7, and +2.8 °C) and precipitation (50%, 90%, 100%, 110%, and 150%) relative to current climate averages and within ranges predicted by global climate change models. Suitable habitat for each species was reduced at all levels of temperature increase. Both species were sensitive to precipitation changes, particularly increases. Under altered climates, including biotic variables reduced habitat by 68–100% relative to the climate‐only model. To design reserve systems conserving sensitive species under global warming, it is important to consider biotic interactions, particularly for habitat specialists and species with strong dependencies on other species.  相似文献   

6.
China is facing an unprecedented set of challenges in balancing the effects of economic development and global climate change with environmental protection and maintaining biodiversity. Although positive steps have been undertaken to remedy this situation, currently 80% of China’s 25 extant primate species are threatened, 15–18 species have population sizes of less than 3000 individuals, and two species of gibbons and one species of langur have been extirpated over the past few decades. Today, virtually all species of primates in China inhabit fragmented landscapes and are distributed in small isolated subpopulations with limited opportunities to exchange individuals or genetic information. Here we present a historical framework examining how human-induced environmental changes, particularly since the second half of the 20th century, accelerated primate population decline in China. In addition, we modeled the expected spatial conflict between agricultural expansion and primate distributions over the next 25–75 years and assessed the current overlap between protected areas and primate distributions. Depending on the assumptions of the spatial conflict model, primate distributions are expected to decline by an additional 51–87% by the year 2100. Thus, unless large-scale conservation policies are implemented immediately the current trend of primate population decline, local extirpation, and species extinctions will accelerate. To mitigate against such extinction scenarios, we advocate the creation of a Chinese national agency and repository of environmental information focused on public awareness and education, the implementation of targeted programs of habitat restoration designed to return impacted forests to a more natural state especially within and at the boundaries of nature reserves, the establishment of additional protect areas, and the construction of a latticework of corridors connecting isolated primate subpopulations. This comprehensive approach offers the most effective way to protect China’s animal and plant biodiversity, including its endangered primate populations.  相似文献   

7.
Aim Species in the tropics respond to global warming by altitudinal distribution shifts. Consequences for biodiversity may be severe, resulting in lowland attrition, range‐shift gaps, range contractions and extinction risks. We aim to identify plant groups (growth forms, families, endemic status) with higher than average risks. Location South Ethiopian highlands. Methods Based on observational data from mainly unexplored and remote mountain regions, we applied a published model to project the consequences of an upward shift of thermal site conditions on the altitudinal distribution of 475 plant species. Annual average temperature increases of up to 5 °C were evaluated. Differences between groups of species were analysed by a permutation procedure and Generalized Linear Models. Results Because of a limited regional species pool, even mild warming is projected to create strong potential risks concerning lowland attrition, i.e. the net loss of species richness because of upward range shifts in the absence of new species arriving. Likewise, many species are expected to face range‐shift gaps, i.e. the absence of an overlap between future and current altitudinal ranges already under mild warming scenarios. Altitudinal contractions and mountain‐top extinctions will potentially become important when warming exceeds 3.5 °C. Mean area per species is projected to decline by 55% for the A2 emissions scenario (+4.2 °C until 2100) because of the physical shape of the mountains. Higher than average vulnerability is expected for endemic species as well as for herbs and ferns. Plant families that are especially threatened are identified. Main conclusions Lowland biotic attrition and range‐shift gaps as predicted by a simple model driven by shifts of isotherms will result in novel challenges for preserving mountain biodiversity in the inner tropics. Whereas contractions of occupied area are expected to threaten endemic and already endangered species in particular, we suggest that conservation priorities can be identified based on simple prognostic models even without precise regional warming scenarios.  相似文献   

8.
Effective conservation management for climate adaptation rests on understanding the factors driving species’ vulnerability in a spatially explicit manner so as to direct on-ground action. However, there have been only few attempts to map the spatial distribution of the factors driving vulnerability to climate change. Here we conduct a species-level assessment of climate change vulnerability for a sample of Australia’s threatened species and map the distribution of species affected by each factor driving climate change vulnerability across the continent. Almost half of the threatened species assessed were considered vulnerable to the impacts of climate change: amphibians being the most vulnerable group, followed by plants, reptiles, mammals and birds. Species with more restricted distributions were more likely to show high climate change vulnerability than widespread species. The main factors driving climate change vulnerability were low genetic variation, dependence on a particular disturbance regime and reliance on a particular moisture regime or habitat. The geographic distribution of the species impacted by each driver varies markedly across the continent, for example species impacted by low genetic variation are prevalent across the human-dominated south-east of the country, while reliance on particular moisture regimes is prevalent across northern Australia. Our results show that actions to address climate adaptation will need to be spatially appropriate, and that in some regions a complex suite of factors driving climate change vulnerability will need to be addressed. Taxonomic and geographic variation in the factors driving climate change vulnerability highlights an urgent need for a spatial prioritisation of climate adaptation actions for threatened species.  相似文献   

9.
Forests modify their productivity, composition, and distribution in response to global change. We studied the radial growth trends of the Western Mediterranean oak Quercus pyrenaica over the last two centuries to analyze whether trees exhibited instability in productivity in response to climatic changes. Trees were sampled to build annual growth chronologies following climatic gradients of increasing moisture availability and decreasing temperature with altitude and latitude. The species’ response to climate showed high variability linked to local climatic conditions. The strength in the positive response of trees to moisture availability was inversely related to precipitation (that is, enhanced by higher water stress) whereas high temperature in the growing season was positive for tree-growth only at cold sites. The oldest ages of trees expanded back to the late 1500 s. These old-growth trees were located at the coldest sites and exhibited a long-term increase in productivity starting 150 years ago which could express a dominant positive effect of warming temperatures since the mid 1800 s at cold-humid sites. Conversely, trees at dry sites exhibited negative growth trends. Particularly low elevation stands located at latitudes below 40° displayed enhanced growth constraints with the increase in water stress around 1970, which suggests vulnerability of Quercus pyrenaica at the sampled altitudinal dry edge. The response of trees to future changes in climate should be monitored, particularly in threatened transitional zones.  相似文献   

10.
More than a century of observations has established that climate influences grape berry composition. Accordingly, the projected global climate change is expected to impact on grape berry composition although the magnitude and direction of impact at regional and subregional scales are not fully known. The aim of this study was to assess potential impacts of climate change on levels of berry anthocyanin and titratable acidity (TA) of the major grapevine varieties grown across all of the Western Australian (WA) wine regions. Grape berry anthocyanin and TA responses across all WA wine regions were projected for 2030, 2050 and 2070 by utilising empirical models that link these berry attributes and climate data downscaled (to ~5 km resolution) from the csiro_mk3_5 and miroc3_2_medres global climate model outputs under IPCC SRES A2 emissions scenario. Due to the dependence of berry composition on maturity, climate impacts on anthocyanin and TA levels were assessed at a common maturity of 22 °Brix total soluble solids (TSS), which necessitated the determination of when this maturity will be reached for each variety, region and warming scenario, and future period. The results indicate that both anthocyanin and TA levels will be affected negatively by a warming climate, but the magnitude of the impacts will differ between varieties and wine regions. Compared to 1990 levels, median anthocyanins concentrations are projected to decrease, depending on global climate model, by up to 3–12 % and 9–33 % for the northern wine regions by 2030 and 2070, respectively while 2–18 % reductions are projected in the southern wine regions for the same time periods. Patterns of reductions in the median Shiraz berry anthocyanin concentrations are similar to that of Cabernet Sauvignon; however, the magnitude is lower (up to 9–18 % in southern and northern wine regions respectively by 2070). Similarly, uneven declines in TA levels are projected across the study regions. The largest reductions in median TA are likely to occur in the present day warmer wine regions, up to 40 % for Chardonnay followed by 15 % and 12 % for Shiraz and Cabernet Sauvignon, respectively, by 2070 under the high warming projection (csiro_mk3_5). It is concluded that, under existing management practices, some of the key grape attributes that are integral to premium wine production will be affected negatively by a warming climate, but the magnitudes of the impacts vary across the established wine regions, varieties, the magnitude of warming and future periods considered.  相似文献   

11.
Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. As climate change is already impacting marine biodiversity and fisheries, there is an urgent need to expand vulnerability assessment to cover a large number of species and areas. Here, we develop a modelling approach to synthesize data on species‐specific estimates of exposure, and ecological and biological traits to undertake an assessment of vulnerability (sensitivity and adaptive capacity) and risk of impacts (combining exposure to hazards and vulnerability) of climate change (including ocean acidification) for global marine fishes and invertebrates. We use a fuzzy logic approach to accommodate the variability in data availability and uncertainties associated with inferring vulnerability levels from climate projections and species' traits. Applying the approach to estimate the relative vulnerability and risk of impacts of climate change in 1074 exploited marine species globally, we estimated their index of vulnerability and risk of impacts to be on average 52 ± 19 SD and 66 ± 11 SD, scaling from 1 to 100, with 100 being the most vulnerable and highest risk, respectively, under the ‘business‐as‐usual' greenhouse gas emission scenario (Representative Concentration Pathway 8.5). We identified 157 species to be highly vulnerable while 294 species are identified as being at high risk of impacts. Species that are most vulnerable tend to be large‐bodied endemic species. This study suggests that the fuzzy logic framework can help estimate climate vulnerabilities and risks of exploited marine species using publicly and readily available information.  相似文献   

12.
As rates of global warming increase rapidly, identifying species at risk of decline due to climate impacts and the factors affecting this risk have become key challenges in ecology and conservation biology. Here, we present a framework for assessing three components of climate‐related risk for species: vulnerability, exposure and hazard. We used the relationship between the observed response of species to climate change and a set of intrinsic traits (e.g. weaning age) and extrinsic factors (e.g. precipitation seasonality within a species geographic range) to predict, respectively, the vulnerability and exposure of all data‐sufficient terrestrial non‐volant mammals (3,953 species). Combining this information with hazard (the magnitude of projected climate change within a species geographic range), we identified global hotspots of species at risk from climate change that includes the western Amazon basin, south‐western Kenya, north‐eastern Tanzania, north‐eastern South Africa, Yunnan province in China, and mountain chains in Papua‐New Guinea. Our framework identifies priority areas for monitoring climate change effects on species and directing climate mitigation actions for biodiversity.  相似文献   

13.
Reproduction of tropical species beyond their geographic range associated with ocean warming is regarded as the key indicator of a range shift. However, the lack of historical breeding records poses challenges for detecting distinct range shifts of tropical fishes. To obtain baseline data of the current status of the occurrence and breeding activity of tropical pomacentrid and apogonid fishes in ocean warming hotspots of temperate reefs (Kochi and Wakayama, 33°N) of Japan, we conducted a two-year underwater visual survey and synthesized those data with recently published information. By combining data from the present as well as past studies, the results confirmed the occurrence of 52 pomacentrid and 34 apogonid species, whereas breeding activity was confirmed for 19 and 16 species, respectively. Species richness and abundance of recruitment periphery and breeding active species were high at the warmer site adjacent to the Kuroshio Current. Most observed species were found beyond their known geographic range. Some species showing active breeding were widespread tropical fishes (e.g., Amphiprion clarkii, Pomacentrus coelestis and Apogon notatus) and probably have established breeding populations irrespective of recent global warming. The winter sea water temperature around the study sites will continue to rise, increasing by >2 °C by the end of the century; therefore, our results are highly relevant and represent the first step to elucidate the potential range extension of tropical fishes into temperate reefs with climate change.  相似文献   

14.
Anthropogenic disturbances have resulted in declines of seed-dispersing primate frugivores in tropical forests. Previous work has suggested that loss of seed dispersal by large frugivores may have a negative impact on ecosystem carbon storage by reducing tree biomass. However, we know little about the potential impacts of losing frugivores in Madagascar’s diverse rainforest ecosystem. Understanding the effects of frugivore extinction on carbon loss is relevant in Madagascar, where threatened lemur taxa are the only dispersers of many large-seeded plant species. Using a dataset of tree species composition and traits from the southeastern rainforests of Ranomafana National Park, we examined whether seed size and lemur-dependent dispersal are positively associated with above-ground tree biomass. We then simulated different scenarios of population declines of large-seeded trees (>10 mm seed length) dependent on lemur-mediated seed dispersal, to examine potential directional changes in carbon storage capacity of Malagasy forests under lemur loss. Lemur-dispersed tree species, which have large seeds, had higher above-ground biomass than other species. Our simulations showed that the loss of large frugivorous primates in Madagascar may decrease the forest’s potential to store carbon. These results demonstrate the importance of primate conservation for maintaining functioning ecosystems and forest carbon stocks in one of the world’s hottest hotspots of biodiversity.  相似文献   

15.
Potential effects of climate change on plant species in the Faroe Islands   总被引:3,自引:0,他引:3  
Aim To identify the effect of climate change on selected plant species representative of the main vegetation types in the Faroe Islands. Due to a possible weakening of the North Atlantic Current, it is difficult to predict whether the climate in the Faroe Islands will be warmer or colder as a result of global warming. Therefore, two scenarios are proposed. The first scenario assumes an increase in summer and winter temperature of 2 °C, and the second a decrease in summer and winter temperature of 2 °C. Location Temperate, low alpine and alpine areas in the northern and central part of the Faroe Islands. Methods The responses of 12 different plant species in the Faroe Islands were tested against measured soil temperature, expressed as Tmin, Tmax, snow cover and growing degree days (GDD), using generalised linear modelling (GLM). Results The tolerance to changes in winter soil temperature (0.3–0.8 °C) was found to be lower than the tolerance to changing summer soil temperature (0.7–1.0 °C), and in both cases lower than the predicted climate changes. Conclusions The species most affected by a warming scenario are those that are found with a limited distribution restricted to the uppermost parts of the mountains, especially Salix herbacea, Racomitrium fasciculare, and Bistorta vivipara. For other species, the effect will mainly be a general upward migration. The most vulnerable species are those with a low tolerance, especially Calluna vulgaris, and also Empetrum nigrum, and Nardus stricta. If the climate in the Faroe Islands should become colder, the most vulnerable species are those at low altitudes. A significantly lower temperature would be expected to produce a serious reduction in the extent of Vaccinium myrtillus and Galium saxatilis. Species like Empetrum nigrum, Nardus stricta, and Calluna vulgaris may also be vulnerable. In any case, these species can be expected to migrate downwards.  相似文献   

16.
Major changes consistent with the fingerprint of global warming have been reported for nearly every ecosystem on earth. Recently, studies have moved beyond correlation-based inference to demonstrate mechanistic links between warming and biological responses, particularly in regions experiencing rapid change. However, the assessment of climate change impacts and development of adaptation options that humans can undertake are at the earliest stages, particularly for marine systems. Here, we use trends in ocean temperature to characterize regions that can act as natural laboratories or focal points for early learning. These discrete marine ‘hotspots’, where ocean warming is fastest, were identified based on 50 years of historical sea surface temperature data. Persistence of these hotspots into the future was evaluated using global climate models. This analysis provides insights and a starting point for scientists aiming to identify key regions of concern with regard to ocean warming, and illustrates a potential approach for considering additional physical drivers of change such as ocean pH or oxygenation. We found that some hotspot regions were of particular concern due to other non-climate stressors. For instance, many of the marine hotspots occur where human dependence on marine resources is greatest, such as south-east Asia and western Africa, and are therefore of critical consideration in the context of food security. Intensive study and development of comprehensive inter-disciplinary networks based on the hotspot regions identified here will allow earliest testing of management and adaptation pathways, facilitating rapid global learning and implementation of adaptation options to cope with future change.  相似文献   

17.
Human‐induced warming may increase the risk of local extinction for plant species with low tolerance of elevated temperatures. The Chihuahuan desert harbors the highest diversity of globose cacti in the world and most of them are at risk of extinction. Predictive models of climate change indicate an increase in summer temperature of 1–2°C by 2030 for this desert. Nevertheless, studies on the vulnerability of cacti species in early development phases to future climate change are scarce. We assessed the survival of three threatened cacti species from the Chihuahuan desert under induced warming. Open‐top chambers (OTCs) were used to simulate the effect of global warming on 2‐year seedlings of Echinocactus platyacanthus f. visnaga, Ferocactus histrix and Stenocactus coptonogonus. OTCs had higher temperature and lower humidity than control plots, and these elevated temperatures reduced seedling survival. Within the OTCs, no living individuals of any species were found after 105 days. Conversely, in the control plots, the three cacti species showed variable numbers of survivors after this period. Therefore the predicted global warming scenarios will greatly limit plant recruitment and the long‐term persistence of natural populations of Mexican endemic cacti species.  相似文献   

18.
Mountains, especially in the tropics, harbour a unique and large portion of the world''s biodiversity. Their geographical isolation, limited range size and unique environmental adaptations make montane species potentially the most threatened under impeding climate change. Here, we provide a global baseline assessment of geographical range contractions and extinction risk of high-elevation specialists in a future warmer world. We consider three dispersal scenarios for simulated species and for the world''s 1009 montane bird species. Under constrained vertical dispersal (VD), species with narrow vertical distributions are strongly impacted; at least a third of montane bird diversity is severely threatened. In a scenario of unconstrained VD, the location and structure of mountain systems emerge as a strong driver of extinction risk. Even unconstrained lateral movements offer little improvement to the fate of montane species in the Afrotropics, Australasia and Nearctic. Our results demonstrate the particular roles that the geography of species richness, the spatial structure of lateral and particularly vertical range extents and the specific geography of mountain systems have in determining the vulnerability of montane biodiversity to climate change. Our findings confirm the outstanding levels of biotic perturbation and extinction risk that mountain systems are likely to experience under global warming and highlight the need for additional knowledge on species'' vertical distributions, dispersal and adaptive capacities.  相似文献   

19.
Understanding how climate change impacts species and ecosystems is integral to conservation. When studying impacts of climate change, warming temperatures are a research focus, with much less attention given to extreme weather events and their impacts. Here, we show how localized, extreme rainfall events can have a major impact on a species that is endangered in many parts of its range. We report incubation temperatures from the world's largest green sea turtle rookery, during a breeding season when two extreme rainfall events occurred. Rainfall caused nest temperatures to drop suddenly and the maximum drop in temperature for each rain‐induced cooling averaged 3.6°C (n = 79 nests, min = 1.0°C, max = 7.4°C). Since green sea turtles have temperature‐dependent sex determination, with low incubation temperatures producing males, such major rainfall events may have a masculinization effect on primary sex ratios. Therefore, in some cases, extreme rainfall events may provide a “get‐out‐of‐jail‐free card” to avoid complete feminization of turtle populations as climate warming continues.  相似文献   

20.
Agroecosystems cover more than one quarter of the global land area (ca. 50 million km2) as highly simplified (e.g. pasturelands) or more complex systems (e.g. polycultures and agroforestry systems) with the capacity to support higher biodiversity. Increasingly more information has been published about primates in agroecosystems but a general synthesis of the diversity of agroecosystems that primates use or which primate taxa are able to persist in these anthropogenic components of the landscapes is still lacking. Because of the continued extensive transformation of primate habitat into human‐modified landscapes, it is important to explore the extent to which agroecosystems are used by primates. In this article, we reviewed published information on the use of agroecosystems by primates in habitat countries and also discuss the potential costs and benefits to human and nonhuman primates of primate use of agroecosystems. The review showed that 57 primate taxa from four regions: Mesoamerica, South America, Sub‐Saharan Africa (including Madagascar), and South East Asia, used 38 types of agroecosystems as temporary or permanent habitats. Fifty‐one percent of the taxa recorded in agroecosystems were classified as least concern in the IUCN Red List, but the rest were classified as endangered (20%), vulnerable (18%), near threatened (9%), or critically endangered (2%). The large proportion of threatened primates in agroecosystems suggests that agroecosystems may play an important role in landscape approaches to primate conservation. We conclude by discussing the value of agroecosystems for primate conservation at a broad scale and highlight priorities for future research. Am. J. Primatol. 74:696‐711, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号