首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultimate determinants of cathemerality, i.e., activity spread over the 24-h cycle, in primates have been linked to various ecological factors. Owing to the fast rate of habitat modification, it is imperative to know whether and how this behavioral flexibility responds to anthropogenic disturbance. The true lemurs (Eulemur clade) constitute a valuable case to study these potential effects, as all species studied so far exhibit cathemerality. Here we explored the effects of anthropogenic disturbance on activity patterns of Eulemur while controlling for ecological factors proposed as determinants of activity shifts. We first performed a meta-analysis using 13 long-term studies conducted over the last three decades on various populations of Eulemur. We fitted a beta regression using the proportion of diurnality (the activity taking place between sunrise and sunset) as the response variable and seven climatic, ecological, and anthropogenic disturbance variables at each site as predictors. We also present a validation with original data using year-round, 24-h activity of collared brown lemurs (Eulemur collaris) in forest fragments with different levels of disturbance in southeastern Madagascar. Diurnality was prevalent at most sites. Seasonality, proportions of leaves in the diet, and group size were all found to be significant predictors of the proportion of diurnal activity. After controlling for socioecological factors in the model, overall anthropogenic disturbance emerged as a negative predictor of diurnality. Our validation suggests that the lemurs in the more disturbed area exhibited more nocturnal activity than those in the less disturbed area. It is unclear whether the plasticity observed might allow populations of Eulemur to persist in disturbed areas longer than lemurs with less flexible activity patterns.  相似文献   

2.
An organism’s body size is intrinsically related to its metabolic requirements, life history profile, and ecological niche. Previous work in primates generally, and lemurs specifically, has shown that body size often correlates with ecological parameters related to temperature and energy availability in the environment, although other studies indicate the absence of any such patterns in lemurs. Here we test hypotheses that predict that body mass in Eulemur should covary with 1) overall food availability or resource seasonality and/or 2) temperature, i.e., Bergmann’s rule. We use data from 722 wild true lemurs to identify population-specific body mass for 27 populations representing 11 of the 12 described Eulemur species, and derive climatic data for each population from the WorldClim database. We use phylogenetic generalized least squares models to evaluate these hypotheses and find that body mass significantly negatively correlates with annual mean temperature and positively correlates with standard deviation of temperature, but does not significantly correlate with annual rainfall or number of dry months. These results indicate that body mass distribution across populations in Eulemur is consistent with Bergmann’s rule, but does not track resource seasonality as seen in other lemurs, e.g., Propithecus. We suggest that the fact that body mass in various lemur radiations correlates with different environmental variables may result in these patterns being obscured when such taxa are combined in a single analysis. This may help explain why some previous work has found little evidence of ecogeographical correlates with body mass across all Lemuriformes.  相似文献   

3.

Background

Climate is often considered as a key ecological factor limiting the capability of expansion of most species and the extent of suitable habitats. In this contribution, we implement Species Distribution Models (SDMs) to study two parapatric amphibians, Lissotriton vulgaris meridionalis and L. italicus, investigating if and how climate has influenced their present and past (Last Glacial Maximum and Holocene) distributions. A database of 901 GPS presence records was generated for the two newts. SDMs were built through Boosted Regression Trees and Maxent, using the Worldclim bioclimatic variables as predictors.

Results

Precipitation-linked variables and the temperature annual range strongly influence the current occurrence patterns of the two Lissotriton species analyzed. The two newts show opposite responses to the most contributing variables, such as BIO7 (temperature annual range), BIO12 (annual precipitation), BIO17 (precipitation of the driest quarter) and BIO19 (precipitation of the coldest quarter). The hypothesis of climate influencing the distributions of these species is also supported by the fact that the co-occurrences within the sympatric area fall in localities characterized by intermediate values of these predictors. Projections to the Last Glacial Maximum and Holocene scenarios provided a coherent representation of climate influences on the past distributions of the target species. Computation of pairwise variables interactions and the discriminant analysis allowed a deeper interpretation of SDMs’ outputs. Further, we propose a multivariate environmental dissimilarity index (MEDI), derived through a transformation of the multivariate environmental similarity surface (MESS), to deal with extrapolation-linked uncertainties in model projections to past climate. Finally, the niche equivalency and niche similarity tests confirmed the link between SDMs outputs and actual differences in the ecological niches of the two species.

Conclusions

The different responses of the two species to climatic factors have significantly contributed to shape their current distribution, through contractions, expansions and shifts over time, allowing to maintain two wide allopatric areas with an area of sympatry in Central Italy. Moreover, our SDMs hindcasting shows many concordances with previous phylogeographic studies carried out on the same species, thus corroborating the scenarios of potential distribution during the Last Glacial Maximum and the Holocene emerging from the models obtained.
  相似文献   

4.
Whether or not species track native climatic conditions during invasions (i.e., climate match hypothesis) is fundamental to understand and prevent potential impacts of invasive species. Recent empirical work suggests that climatic mismatches between native and invasive ranges are pervasive. Whether these differences are due to adaptation to new climatic spaces in the invasive range or due to partial filling of the potential climatic space are still subject to debate. Here, we analyze climatic niche dynamics associated with the invasion of the two most common invasive plants in Brazilian semi-arid areas, Prosopis juliflora and Prosopis pallida. These species have been simultaneously introduced in the region, which creates a unique opportunity to compare their niche dynamics during invasion. Given that P. juliflora have a much wider native range size, we expect these species would present different dispersal potentials, which might translate into different unfilling levels. Using an ordination method with kernel smoother and null models, we contrasted climate spaces occupied by each species in both native and invasive ranges. We further used ecological niche models (ENMs) to compare reciprocal predictions of potentially suitable areas. Against our expectation based on differences in native range sizes, climatic niches of P. juliflora and P. pallida overlapped greatly, both in their native and invasive ranges. Our results support niche conservatism during the invasion process. Climatic mismatches among native and invaded ranges were exclusively attributed to unfilling of native climates in the invasive range. Both species showed similar unfilling levels. Likewise, ENMs predicted regions not yet occupied in the invasive range, revealing a potential for further expansion. We discuss colonization time lag and founder effect as potential mechanisms that may have prevented these species to fully occupy their native niches in the invasive range.  相似文献   

5.
The similar geographic distributions of an extinct (Dasypus bellus) and an extant (D. novemcinctus) armadillo species have long been of interest to scholars because of the unresolved phylogeny. The relationship between the two species has been investigated through morphological and phylogenetic studies, whereas the ecological perspective has been overlooked, the importance of which is more and more acknowledged in speciation events. Here, we used ecological niche models to study the climatic niche similarity of three species of Dasypus (D. bellus, D. novemcinctus, and D. kappleri) and provide new insights on the relationship among them. The climatic niche similarity was compared in two ways: hindcast of ecological niche models based on occurrences and climatic layers, and direct niche boundary comparison along bioclimatic axes. The fossil records of D. bellus were not predicted suitable by the ecological niche models of the two extant armadillos. The direct comparison of niche boundary showed that D. bellus lived in colder and relative dryer climates, with high temperature variation and low precipitation variation. Our results did not support the previously assumed ecological similarity of D. bellus and D. novemcinctus based on their geographic distributions and emphasized the possibility of a cold adapted characteristic of the life history of D. bellus.  相似文献   

6.
Despite the great variety of habitats in Madagascar, Eulemur has successfully populated most forested habitats on the island. Although the high dietary flexibility of Eulemur is often credited as one of the drivers of its evolutionary success, other behavioral evidence suggests a limited capacity for dietary switching. To shed light on the feeding strategies of Eulemur, we compared the dietary flexibility between populations of this genus with that of another widespread lemur taxon, Propithecus. We hypothesized that Eulemur would show greater dietary flexibility than Propithecus, which has a digestive system specialized for folivory, and that Eulemur living in dry forests would switch its diet from fruit to other food seasonally. To examine these hypotheses, we performed a phylogenetic least-squares analysis on 10 populations of Eulemur and 7 of Propithecus to assess the contribution of environmental variables and body mass on their dietary flexibility while controlling for phylogenetic relatedness. Eulemur relied heavily on fruit and did not show large variations in primary food over the year. Propithecus consumed leaves and fruits equally and exhibited considerable flexibility across seasons. Therefore, in contrast to our predictions, the anatomical specialization for fiber digestion heightens dietary flexibility in Propithecus. At the intrageneric level, we found similar ecogeographic variation; populations of both genera with heavier body mass consumed more fruit. As we predicted, Eulemur in drier habitats switched the diet from fruit to alternative food more frequently. To compensate for low dietary flexibility, Eulemur mostly adopts a power-feeding strategy by which it increases energy expenditure to acquire patchily distributed fruit resources.  相似文献   

7.
Recent comparative studies on the evolution of mammalian sociality came to opposite conclusions regarding the direction and drivers of evolutionary transitions in social organization, particularly concerning the evolution of pair-living among primates. Because the genus Eulemur is one of the few exceptional primate genera that contain both group- and pair-living species, eulemurs offer a rare opportunity to illuminate the processes driving social diversity among species with very similar life histories and ecologies. The aims of our study were therefore 1) to reconstruct the evolution of social organization in eulemurs with new demographic and phylogenetic data and 2) to evaluate several hypotheses about the evolution of pair-living with data from our long-term study of Eulemur rufifrons and published data on other eulemurs. Our review of published data confirmed that E. mongoz and E. rubriventer are pair-living, whereas the 10 other species of Eulemur live in groups with multiple adult males and females. Furthermore, pair-living evolved at least once among eulemurs from group-living ancestors. The available comparative evidence indicated that this evolutionary transition was probably not driven by male infanticide, social instability, or singular ecological factors. Instead, we propose that female competition has favored small female group size and that this effect may have been exacerbated by interspecific competition with sympatric congeners in the ancestors of the pair-living species. In conclusion, we confirmed that the evolution of pair-living from group-living ancestors among true lemurs is exceptional, but not unique, among mammals, and that commonly invoked hypotheses for the evolution of pair-living do not appear to be supported for this genus.  相似文献   

8.
Ecological niche modeling is used to estimate species distributions based on occurrence records and environmental variables, but it seldom includes explicit biotic or historical factors that are important in determining the distribution of species. Expert knowledge can provide additional valuable information regarding ecological or historical attributes of species, but the influence of integrating this information in the modeling process has been poorly explored. Here, we integrated expert knowledge in different stages of the niche modeling process to improve the representation of the actual geographic distributions of Mexican primates (Ateles geoffroyi, Alouatta pigra, and A. palliata mexicana). We designed an elicitation process to acquire information from experts and such information was integrated by an iterative process that consisted of reviews of input data by experts, production of ecological niche models (ENMs), and evaluation of model outputs to provide feedback. We built ENMs using the maximum entropy algorithm along with a dataset of occurrence records gathered from a public source and records provided by the experts. Models without expert knowledge were also built for comparison, and both models, with and without expert knowledge, were evaluated using four validation metrics that provide a measure of accuracy for presence-absence predictions (specificity, sensitivity, kappa, true skill statistic). Integrating expert knowledge to build ENMs produced better results for potential distributions than models without expert knowledge, but a much greater improvement in the transition from potential to realized geographic distributions by reducing overprediction, resulting in better representations of the actual geographic distributions of species. Furthermore, with the combination of niche models and expert knowledge we were able to identify an area of sympatry between A. palliata mexicana and A. pigra. We argue that the inclusion of expert knowledge at different stages in the construction of niche models in an explicit and systematic fashion is a recommended practice as it produces overall positive results for representing realized species distributions.  相似文献   

9.
Of the four species encompassing the genus Pelobates, only two overlap along a narrow contact zone, i.e., Pelobates fuscus and Pelobates syriacus. Our study investigated the shifts in niche similarity of these two closely related species from the Last Interglacial towards the end of the twenty-first century. We computed climatic suitability models using Maxent and projected them onto future and past climates. We used fossil occurrences to test the predictive accuracy of past projections. Niche similarity was assessed between the studied species using Schoener’s D index and a background similarity test. Finally, we evaluated niche differentiation by contrasting the species occurrences using a logistic regression analysis. The ecological niches are slightly extended outside the present geographical ranges in the Caucasus and the Balkans, south for P. fuscus and north and west for P. syriacus, suggesting that their present distribution is not at equilibrium with the climate. The Last Interglacial distribution of P. fuscus included British Isles and broad areas in western, central, and northern Europe, while P. syriacus extended northwards in the Balkans. The validation with fossil records revealed good predictive performance (omission error?=?4.1 % for P. fuscus and 16.6 % for P. syriacus). During the Last Glacial Maximum, climatic suitability persisted in refugia in southern Europe, Pannonian Basin, and Caucasus for P. fuscus, and Israel, southern Balkans, and Caucasus for P. syriacus. Present potential distributions revealed a low similarity of species’ ecological niches, comparable with Last Interglacial, but projections towards 2080 revealed a sharp increase.  相似文献   

10.
As habitat loss and fragmentation place growing pressure on endangered nonhuman primate populations, researchers find increasing evidence for novel responses in behavior. In western Uganda between the Budongo and Bugoma Forests, chimpanzees (Pan troglodytes schweinfurthii) inhabit a mosaic landscape comprising forest fragments, human settlements, and agricultural land. We recorded nests and feeding evidence of unhabituated chimpanzees in this region over a 12-mo period. We found extensive evidence of nesting in introduced tree species, including eucalyptus (Eucalyptus grandis), guava (Psidium guajava), cocoa (Theobroma cacao), and Caribbean pine (Pinus caribaea). In addition, we found instances of ground nesting, nest reuse, and composite nests constructed from branches of multiple trees. This evidence may indicate a lack of suitable nesting trees or attempts by chimpanzees to nest in areas of riparian forest that allow them to avoid human detection. We also found new evidence for eucalyptus bark feeding by chimpanzees. Such evidence suggests chimpanzees respond flexibly to mitigate anthropogenic pressures in human-dominated landscapes. The limits of such flexibility remain unknown. Further research is needed to examine systematically the factors influencing the use of such resources and to understand better the extent to which chimpanzees can persist while relying on them.  相似文献   

11.
We investigated multivariate relationships among snowmelt, soil physicochemical properties and the distribution patterns of Arctic tundra vegetation. Seven dominant species were placed in three groups (Veg-1, 2, 3) based on niche overlap (Pianka’s Index) and ordination method, and a partial least squares path model was applied to estimate complex multivariate relationships of four latent variables on the abundance and richness of plant species. The abundance of Veg-1 (Luzula confusa and Salix polaris) was positively correlated with early snowmelt time, high soil nutrients and dense moss cover, but the abundance of Veg-2 (Saxifraga oppositifolia, Bistorta vivipara and Silene acaulis) was negatively correlated with these three variables. Plant richness was positively associated with early snowmelt and hydrological properties. Our results indicate that the duration of the snowpack can directly influence soil chemical properties and plant distribution. Furthermore, plant species richness was significantly affected by snow melt time in addition to soil moisture and moss cover. We predict that L. confusa and S. polaris may increase in abundance in response to early snowmelt and increased soil moisture-nutrient availability, which may be facilitated by climate change. Other forb species in dry and infertile soil may decrease in abundance in response to climate change, due to increasingly unfavourable environmental conditions and competition with mosses.  相似文献   

12.
Knowledge of a species’ geographic distribution is crucial to assessing its vulnerability. It is also important to know if protected areas provide effective protection for raptor species. Here, we examine the species richness (S) patterns, factors predicting S and the effectiveness of protected areas (EPA) in the conservation of diurnal raptors in Venezuela. We modeled geographic distributions (SDM) of 64 raptor species using ecological niche models. Nine climatic and seven landscape metrics were used as environmental predictors. SDM were stacked to examine S and predictors of S were investigated using regression models. This study evaluated S patterns in the 13 bioregions defined for Venezuela. A gap analysis was performed to evaluate the EPA in the conservation of raptor diversity. Forty species showed a continuous distribution, whereas as disjunct distributions were observed in 24 species. Species richness differed among bioregions; six pairwise compared bioregions did not show differences. Guyana Massif and the mountains of northern Venezuela had the highest species richness. Landscape features, specifically canopy height, land cover and terrain slope explained most of the species richness. Environmental heterogeneity affected the distribution of S and is therefore important in conservation planning for Neotropical raptors. Responses from environmental variables used to predict S were scale dependent; it is necessary to standardize methods/experimental design to study the biogeography of raptors. Priority-setting for the conservation of raptors in Venezuela must consider restricted range species, even if they are not threatened. A new territorial ordering is urgent to improve the protection of this group of birds.  相似文献   

13.
Niche conservatism is the tendency of related species to retain ancestral tolerances after geographic separation. We used Ecological Niche Modelling and Principal Components Analysis of bioclimatic and habitat variables to describe the extent of the species niche, and degrees of bioclimatic–habitat niche conservatism within the mountain hare (L. timidus) clade. Mountain hare niche space was contrasted with that of the European hare (L. europaeus), to shed light on species interactions in contact zones throughout Europe. All five subspecies of mountain hare had quantifiably distinct niches. Fennoscandian (L.t. sylvaticus, L.t. timidus) and highland (L.t. scoticus, L.t. varronis) subspecies, however, were most similar, exhibiting greatest apparent niche conservatism. They inhabit tundra, boreal forest and uplands, and, hence are presumed most similar to the ancestral form. The Irish hare was distinct, being consistently distinguished from other mountain hares in both 2D and nth dimensional (4D) niche space. The ecological distinctiveness of the Irish hare provides further evidence that it is an Evolutionarily Significant Unit, particularly vulnerable to displacement by introduced European hares with which it competes and hybridises. Projections under global climate change suggest that, by 2070, bioclimatic space for invasive European hares in Ireland will expand (by 79%) but contract for endemic Irish hares (by 75%), further facilitating their replacement. The near complete species replacement of the heath hare (L.t. sylvaticus) in southern Sweden, where the European hare has also been introduced, may suggest a similar fate may be in store for the Irish hare.  相似文献   

14.
Integration between ecology and biogeography provides insights into how niche specialization affects the geographical distribution of species. Given that rivers are not effective barriers to dispersal in three parapatric species of squirrel monkeys (Saimiri vanzolinii, S. cassiquiarensis and S. macrodon) inhabiting floodplain forests of Central Amazonia, we tested whether forest structure and tree diversity may explain species differences in niche specialization and spatial segregation. We sampled 6617 trees of 326 species in three habitats (high várzea, low várzea and chavascal) used by three Saimiri species, and estimated tree species richness in each of them. For each tree, we measured variables known to influence habitat use in primates, such as crown area and presence of lianas, epiphytes and hemi-epiphytes. We used ANOVA to compare these variables and performed multivariate analyses (NMDS, ANOSIM and SIMPER) to evaluate dissimilarities in forest structure among each habitat inhabited by the three Saimiri species. We identified differences in the tree species richness, crown area and presence of lianas, epiphytes and hemi-epiphytes between the three habitats for all Saimiri species. NMDS demonstrated that areas of high and low várzeas occupied by S. vanzolinii were clearly separated from the other species. We also found that different plant species contributed to dissimilarity among Saimiri ranges. Our findings support the hypothesis that tree community structure may promote niche specialization and spatial segregation among primates. We discuss how these patterns could have been favored by historical changes in forest flood patterns, the evolutionary history of Saimiri spp., and past competition.  相似文献   

15.
A key to understanding the origin and identity of young species lays on the knowledge of the Quaternary climatic oscillations’ effect on gene flow and vicariance. Even though the effect of climatic fluctuations is relatively well understood for southern hemisphere plant species, little is known about their effect on the evolutionary histories of species from mainland and islands. Thus, we investigated whether Quaternary climate-driven fluctuations translated into lineage divergence and speciation, followed or not by climatic niche differentiation, in two allopatric plant species, Calceolaria uniflora and C. fothergillii from Patagonia and Malvinas/Falkland islands, respectively. We sampled the range of both species, and sequenced two chloroplastic (cpDNA; trnS–trnG and trnH–psbA), and one single copy “anonymous” non-coding nuclear region (nDNA). We performed phylogeographic and dating analyses, and adjusted spatio-temporal diffusion models. We complemented molecular evidence with climatic niche differentiation analyses and species paleo-distribution projections. A species coalescent reconstruction based on multi-locus data retrieved both species as monophyletic. Estimates from cpDNA indicated the species diverged during the Great Patagonian Glaciation. Chloroplast and nuclear DNA showed east–west distribution of the main genetic groups but with contrasting spatial genetic diversity. The spatio-temporal diffusion analyses showed that between 1–0.8 Mya and 570 Kya the lineage leading to C. fothergillii diverged from C. uniflora and arrived to the islands. Climatic niche projections hindcasted range expansions during glaciations, and contractions during the interglacial periods. Comparisons of climatic niches between the two study species indicated that temperature variables show evidence of niche conservatism while precipitation regimes supported niche divergence, even when considering the background environmental divergence. Our study indicates that glacial fluctuations affected the mainland/islands connections favouring speciation mediated not only by isolation, but also by climatic niche differentiation.  相似文献   

16.
Several alpine vertebrates share a distribution pattern that extends across the South-western Palearctic but is limited to the main mountain massifs. Although they are usually regarded as cold-adapted species, the range of many alpine vertebrates also includes relatively warm areas, suggesting that factors beyond climatic conditions may be driving their distribution. In this work we first recognize the species belonging to the mentioned biogeographic group and, based on the environmental niche analysis of Plecotus macrobullaris, we identify and characterize the environmental factors constraining their ranges. Distribution overlap analysis of 504 European vertebrates was done using the Sorensen Similarity Index, and we identified four birds and one mammal that share the distribution with P. macrobullaris. We generated 135 environmental niche models including different variable combinations and regularization values for P. macrobullaris at two different scales and resolutions. After selecting the best models, we observed that topographic variables outperformed climatic predictors, and the abruptness of the landscape showed better predictive ability than elevation. The best explanatory climatic variable was mean summer temperature, which showed that P. macrobullaris is able to cope with mean temperature ranges spanning up to 16C. The models showed that the distribution of P. macrobullaris is mainly shaped by topographic factors that provide rock-abundant and open-space habitats rather than climatic determinants, and that the species is not a cold-adapted, but rather a cold-tolerant eurithermic organism. P. macrobullaris shares its distribution pattern as well as several ecological features with five other alpine vertebrates, suggesting that the conclusions obtained from this study might be extensible to them. We concluded that rock-dwelling and open-space foraging vertebrates with broad temperature tolerance are the best candidates to show wide alpine distribution in the Western Palearctic.  相似文献   

17.
Prey populations can be strongly influenced by predators and parasitoids, and migratory prey whose distributions vary geographically throughout their breeding seasons encounter different combinations of predators and parasitoids throughout their range. North American monarch butterflies (Danaus plexippus) are susceptible to a wide variety of natural enemies, but the distribution of these natural enemies has not been quantified. We developed ecological niche models using environmental data to identify areas with suitable abiotic conditions for eight known natural enemies of monarchs, including six predators: Arilus cristatus, Harmonia axyridis, Monomorium minimum, Podisus maculiventris, Polistes spp., and Solenopsis geminata; and two parasitoids: Lespesia archippivora and Pteromalus cassotis. We combined correlated suitable areas for individual predators and parasitoids to identify regions with the most predator and parasitoid species potential. The Gulf Coast, West Coast, Florida, and parts of the eastern United States are predicted to have the most natural enemy species. We suggest that future research should assess monarch mortality rates in these areas, and that monarch conservation strategies consider pressure from natural enemies.  相似文献   

18.
This study addressed the response of Naufraga balearica, a critically endangered plant endemic to Mallorca (Balearic Islands, western Mediterranean Basin), and its adjacent community to climatic factors by assessing whether climate influences plant cover in N. balearica, including oscillation associated with seasonality, and whether the accompanying species influences its response to climatic factors. The cover of N. balearica and two other accompanying species (Erodium reichardii and Dactylis glomerata) were estimated quarterly from permanent plots over 12 years. The original time series of plant cover and climatic variables were transformed to obtain a smoothed and a detrended time series. The tendency of all variables was assessed using a simple linear regression of the smoothed series. The relationship among plant cover and climatic variables were tested by correlation. Naufraga balearica showed a declining trend, while E. reichardii and D. glomerata experienced a stable and an increasing population trend, respectively. However, all species showed an annual cover oscillation with a similar pattern. A new bioclimatic index combining temperature and precipitation variables was a good predictor although extreme meteorological events substantially altered the trends and patterns of the three species. The response of N. balearica to climatic factors, including extreme weather events, is exacerbated by the presence of other species, mainly those grasses with caespitose growth form and with a faster response to the changing environmental factors. In a climate change scenario, N. balearica would be limited to the shadiest grass-free zones. The current situation emphasises the importance of taking conservation action to guarantee the species conservation.  相似文献   

19.
Repeated climate change during glacial and interglacial periods of the Quaternary led to mass migrations that resulted in disjunct distributions for many species. However, few studies have examined the processes that form disjunct distributions in Northeast Asia (NEA). In this study, we examined the disjunct distribution of Betula davurica Pall. in the Japanese archipelago. This species is a dominant canopy tree found in cool-temperate deciduous broad-leaved forests of continental NEA. We hypothesized that Quaternary climate change caused the present disjunct distribution pattern of this species. To test this hypothesis, we adopted a species distribution model and examined a series of potential habitats in the Last Glacial Maximum (LGM), the mid-Holocene, and the present. We generated models in MaxEnt with B. davurica presence as the response variable and six bioclimatic variables as predictor variables. During the LGM, projected potential habitats were distributed around the Korean Peninsula, East China, and the Japanese archipelago, excluding Hokkaido. In the mid-Holocene, habitats retreated both from East China and western Japan, remained unchanged in the Korean Peninsula and central Honshu mountains, and expanded to northern China, the Russian Far East, as well as northern Japan (Hokkaido). Thus, post-LGM global warming led to an expansion of B. davurica distribution to northern parts of continental NEA, along with a retreat in the Japanese archipelago. This shift in populations formed the present disjunct distribution.  相似文献   

20.
Climate change projections in southern Africa show a drier and a warmer future climate. It is not yet clear how these changes are going to affect the suitable habitat of bush encroacher woody species in southern African savannas. Maximum Entropy niche modelling technique was used to test the extent to which climate change is likely to affect the suitable habitat of Vachellia karroo in Zimbabwe based on six Global Climate Models (GCMs) from Coupled Model Intercomparison Project Phase 5 (CMIP5) and two Representative Concentration Pathways (RCPs) for the 2070s. An overlay analysis was then performed in a Geographic Information System based on the current and future bioclimatically suitable areas for the respective GCMs and RCPs. This was done to determine the potential effect of climate change on the focal species. Results show that temperature related variables are more important in explaining the spatial distribution of V. karroo than precipitation related variables. In addition, results indicate an overall increase in the modelled suitable habitat for V. karroo by the 2070s across the GCMs and RCPs considered in this study. Specifically, the suitable habitat of V. Karroo is projected to increase by a maximum of 57,594 km2 signifying a 69% increase from the current suitable habitat (83,674 km2). The suitable areas are projected to increase in eastern, western and south eastern parts of Zimbabwe. These results imply that improved understanding of the response of woody species to a changing climate is important for managing bush encroachment in savanna ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号