首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Quantitative autoradiography was used to compare the binding properties of α7-type nicotinic acetylcholine receptors in fetal and adult rat hippocampus. Whereas there were high levels of 125I-α-bungarotoxin (125I-α-BTX) binding throughout fetal hippocampal field CA1, there was a significant decrease in binding site density in the adult. The affinity of 125I-α-BTX binding, as well as α-cobratoxin and nicotine potency to displace 125I-α-BTX, did not change with age. Addition of Ca2+ to the assay buffer did not alter 125I-α-BTX binding, or α-cobratoxin inhibition of 125I-α-BTX binding, although it significantly increased nicotine affinity at both ages. The effect of Ca2+ on agonist affinity was dose-dependent, with an EC50 value of 0.25–0.5 m M . Ca2+ also significantly increased the cooperativity of nicotine displacement curves in stratum oriens of the adult, but not in the fetus. These findings indicate that the properties of hippocampal 125I-α-BTX binding sites are largely similar across age. Ca2+ selectively enhances the affinity of agonist binding, with no change in antagonist binding. This ionic effect may result from potentiation of agonist binding to a desensitized state of the α7 nicotinic acetylcholine receptor and may represent an important neuroprotective mechanism.  相似文献   

2.
We evaluated the impact of environmental training on the functions of pre-synaptic glutamatergic NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and nicotinic receptors expressed by hippocampal noradrenergic nerve terminals. Synaptosomes isolated from the hippocampi of mice housed in enriched (EE) or standard (SE) environment were labeled with [3H]noradrenaline ([3H]NA) and tritium release was monitored during exposure in superfusion to NMDA, AMPA, epibatidine or high K+. NMDA -evoked [3H]NA release from EE hippocampal synaptosomes was significantly higher than that from SE synaptosomes, while the [3H]NA overflow elicited by 100 μM AMPA, 1 μM epibatidine or (9, 15, 25 mM) KCl was unchanged. In EE mice, the apparent affinity of NMDA or glycine was unmodified, while the efficacy was significantly augmented. Sensitivity to non-selective or subtype-selective NMDA receptor antagonists (MK-801, ifenprodil and Zn2+ ions) was not modified in EE. Finally, the analysis of NMDA receptor subunit mRNA expression in noradrenergic cell bodies of the locus coeruleus showed that NR1, NR2A, NR2B and NR2D subunits were unchanged, while NR2C decreased significantly in EE mice as compared to SE mice. Functional up-regulation of the pre-synaptic NMDA receptors modulating NA release might contribute to the improved learning and memory found in animals exposed to an EE.  相似文献   

3.
Abstract: ATP, an established neurotransmitter, causes elevation of cytosolic Ca2+ and catecholamine secretion when applied to chromaffin cells in the intact adrenal gland. The ATP-induced rise in Ca2+ is due both to release from internal stores and to entry across the plasma membrane. The latter source of Ca2+ causes secretion; the primary role of Ca2+ released from internal stores remains undetermined. In this article, we have studied the nucleotide specificity for activating the two types of Ca2+ increases. The agonist potency order for the increase in fluorescence from fura-2-loaded chromaffin cells due to release of Ca2+ from internal stores is ATP = UTP > ADP > 2-methylthio-ATP, α,β-methylene ATP, identifying the receptor as a P2U purinoceptor. The potency order for secretion is 2-methylthio-ATP > ATP > α,β-methylene ATP, ADP, UTP, placing the receptor in the P2Y subtype. Thus, two distinct receptors are responsible for Ca2+ release and secretion. Agonists were more effective in the absence of extracellular Mg2+, suggesting that ATP uncomplexed with divalent cations binds preferentially to both receptors. The low response of both receptors to ADP distinguishes them from the ATP receptor on these cells that inhibits voltage-dependent Ca2+ current and secretion.  相似文献   

4.
Abstract: The Alzheimer's disease (AD) β-amyloid precursor proteins (βAPPs) are large membrane-spanning proteins that give rise to the βA4 peptide deposited in AD amyloid plaques. βAPPs can also yield soluble forms (APPss) that are potently neuroprotective against glucose deprivation and glutamate toxicity, perhaps through their ability to lower the intraneuronal calcium concentration ([Ca2+]i). We have investigated the mechanism through which APPss exert these effects on cultured hippocampal neurons. The ability of APPss to lower rapidly [Ca2+]i was mimicked by membrane-permeable analogues of cyclic AMP (cAMP) and cyclic GMP (cGMP), as well as agents that elevate endogenous levels of these cyclic nucleotides. However, only cGMP content was increased by APPs treatment, and specific inhibition of cGMP-dependent protein kinase (but not cAMP-dependent kinase) blocked the activity of APPss. A membrane-permeable analogue of cGMP (8-bromo-cGMP) also mimicked the ability of APPss to attenuate the elevation of [Ca2+]i by glutamate, apparently through inhibition of NMDA receptor activity. In addition, 8-bromo-cGMP afforded protection against glucose deprivation and glutamate toxicity, and the protection by APPss against glucose deprivation was blocked by an inhibitor of cGMP-dependent kinase. Together, these data suggest that APPss mediate their [Ca2+]i-lowering and excitoprotective effects on target neurons through increases in cGMP levels.  相似文献   

5.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

6.
Abstract: Deposit of β-amyloid protein (Aβ) in Alzheimer's disease brain may contribute to the associated neurodegeneration. We have studied the neurotoxicity of Aβ in primary cultures of murine cortical neurons, with the aim of identifying pharmacologic ways of attenuating the injury. Exposure of cultures to Aβ (25–35 fragment; 3–25 4mU M ) generally triggers slow, concentration-dependent neurodegeneration (over 24–72 h). With submaximal Aβ- (25–35) exposure (10 μ M ), substantial (>40% within 48 h) degeneration often occurs and is markedly attenuated by the presence of the Ca2+ channel blockers nimodipine (1–20 μ M ) and Co2+ (100 μ M ) during the Aβ exposure. However, Aβ neurotoxicity is not affected by the presence of glutamate receptor antagonists. We suggest that Ca2+ influx through voltage-gated Ca2+ channels may contribute to Aβ-induced neuronal injury and that nimodipine and Co2+, by attenuating such influx, are able to attenuate Aβ neurotoxicity.  相似文献   

7.
The existence of pre-synaptic auto- and hetero receptors which modulate neurotransmitter release is well documented. Emerging evidence show that in some cases these pre-synaptic receptors may also cross-talk with each other. The aim of the present work was to investigate whether acetylcholine receptors (nAChRs) and dopamine (DA) autoreceptors, which are both able to modulate DA release, functionally interact on the same nerve endings. We used rat and mouse nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed to nicotinic and dopaminergic receptor ligands. Both nicotinic agonists and 4-aminopyridine (4-AP) provoked [3H]DA release which was inhibited by quinpirole and blocked by sulpiride and raclopride. Both the inhibitory effect of quinpirole and the stimulatory effect of (−)nicotine did not change when the nAChRs or the DA receptors were desensitized. (−)Nicotine and 4-AP were able to stimulate [3H]DA overflow also in mouse synaptosomes and this overflow was partially inhibited by quinpirole. In the β2 knockout mice quinpirole was still able to inhibit the [3H]DA overflow elicited by 4-AP. To conclude: in rat and mouse the (−)nicotine evoked-release can be modulated by D2/D3 autoreceptors present on the DA terminals and nAChRs function is independent from D2/D3 autoreceptors which themselves may function independently from the activation of nAChRs.  相似文献   

8.
Abstract: The effects of the nicotinic agonist (+)-anatoxin-a have been examined in four different preparations, representing at least two classes of neuronal nicotinic receptors. (+)-Anatoxin-a was most potent (EC50= 48 n M ) in stimulating 86Rb+ influx into M10 cells, which express the nicotinic receptor subtype comprising α4 and β2 subunits. A presynaptic nicotinic receptor mediating acetylcholine release from hippocampal synaptosomes was similarly sensitive to (+)-anatoxin-a (EC50= 140 n M ). α-Bungarotoxin-sensitive neuronal nicotinic receptors, studied using patch-clamp recording techniques, required slightly higher concentrations of this alkaloid for activation: Nicotinic currents in hippocampal neurons were activated by (+)-anatoxin-a with an EC50 of 3.9 γ M , whereas α7 homooligomers reconstituted in Xenopus oocytes yielded an EC50 value of 0.58 γ M for (+)-anatoxin-a. In these diverse preparations, (+)-anatoxin-a was between three and 50 times more potent than (–)-nicotine and ˜20 times more potent than acetylcholine, making it the most efficacious nicotinic agonist thus far described.  相似文献   

9.
Abstract: Amyloid β protein (Aβ), the central constituent of senile plaques in Alzheimer's disease (AD) brain, is known to exert toxic effects on cultured neurons. The role of the voltage-sensitive Ca2+ channel (VSCC) in β(25–35) neurotoxicity was examined using rat cultured cortical and hippocampal neurons. When L-type VSCCs were blocked by application of nimodipine, β(25–35) neurotoxicity was attenuated, whereas application of ω-conotoxin GVIA (ω-CgTX-GVIA) or ω-agatoxin IVA (ω-Aga-IVA), the blocker for N- or P/Q-type VSCCs, had no effects. Whole-cell patch-clamp studies indicated that the Ca2+ current density of β(25–35)-treated neurons is about twofold higher than that of control neurons. Also, β(25–35) increased Ca2+ uptake, which was sensitive to nimodipine. The 2',7'-dichlorofluorescin diacetate assay showed the ability of β(25–35) to produce reactive oxygen species. Nimodipine had no effect on the level of free radicals. In contrast, vitamin E, a radical scavenger, reduced the level of free radicals, neurotoxicity, and Ca2+ uptake. These results suggest that β(25–35) generates free radicals, which in turn, increase Ca2+ influx via the L-type VSCC, thereby inducing neurotoxicity.  相似文献   

10.
Abstract: Increasing data suggest that the amyloid β-peptide (Aβ), which accumulates in the brains of Alzheimer's victims, plays a role in promoting neuronal degeneration. Cell culture studies have shown that Aβ can be neurotoxic and recent findings suggest that the mechanism involves destabilization of cellular calcium homeostasis. We now report that cytochalasin D, a compound that depolymerizes actin microfilaments selectively, protects cultured rat hippocampal neurons against Aβ neurotoxicity. Cytochalasin D was effective at concentrations that depolymerized actin (10–100 n M ). The elevation of [Ca2+]i induced by Aβ, and the enhancement of [Ca2+]i responses to glutamate in neurons exposed to Aβ, were markedly attenuated in neurons pretreated with cytochalasin D. The protective effect of cytochalasin D appeared to result from a specific effect on actin filaments and reduction in calcium influx, because cytochalasin E, another actin filament-disrupting agent, also protected neurons against Aβ toxicity; the microtubule-disrupting agent colchicine was ineffective; cytochalasin D did not protect neurons against the toxicity of hydrogen peroxide. These findings suggest that actin filaments play a role in modulating [Ca2+]i responses to neurotoxic insults and that depolymerization of actin can protect neurons against insults relevant to the pathogenesis of Alzheimer's disease.  相似文献   

11.
Abstract: Effects of concanavalin A on transmitter release were investigated in primary cultures of chick sympathetic neurons. The lectin reduced electrically evoked [3H]noradrenaline release by up to 30% with half-maximal inhibition at 0.16 µ M . Concanavalin A also reduced the release triggered by extracellular Ca2+ in neurons depolarized by 25 m M K+ or rendered Ca2+-permeable by the ionophore A23187. The inhibitory action of concanavalin A on electrically evoked release was additive to that of the α2-adrenergic agonist UK 14,304. Inactivation of Gs and Gi/Go type G proteins by either cholera or pertussis toxin did not alter the inhibitory effect of the lectin. Concanavalin A failed to affect the resting membrane potential, action potential waveforms, or voltage-dependent K+ and Ca2+ currents. In contrast, the lectin efficiently blocked both the Ca2+-dependent and -independent α-latrotoxin-induced transmitter release, but only when applied before the toxin. The reduction of electrically evoked, as well as α-latrotoxin-evoked, release by concanavalin A was attenuated in the presence of glucose and abolished by methyl α- d -mannopyranoside. The dimeric derivative, succinyl-concanavalin A, was significantly less active than tetrameric concanavalin A. In bovine adrenal chromaffin cells, which displayed only weak secretory responses to α-latrotoxin, concanavalin A failed to alter K+-evoked catecholamine secretion. These results show that concanavalin A causes presynaptic inhibition in sympathetic neurons and indicate that cross-linking of α-latrotoxin receptors may reduce action potential-dependent transmitter release.  相似文献   

12.
Abstract: There are two α-subunit isoforms (α1 and α2) and two β-subunit isoforms (β1 and β2) of Na+,K+-ATPase in astrocytes, but the functional heterodimer composition is not known. Ouabain (0.5–1.0 m M ) increased the levels of α1 and β1 mRNAs, whereas it decreased those of α2 and β2 mRNAs in cultured rat astrocytes. The increases in α1 and β1 mRNAs were observed at 6–48 h after addition of the inhibitor. Immunochemical analyses showed that ouabain increased α1 and β1, but not α2 and β2, proteins, and that the isoforms in control and ouabain-treated cultures were of glial origin. Low extracellular K+ and monensin (20 µ M ) mimicked the effect of ouabain on α1 mRNA. The ouabain-induced increase in α1 mRNA was blocked by the protein synthesis inhibitor cycloheximide (10 µ M ), the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N,N,N',N' -tetraacetic acid tetraacetoxymethyl ester (30 µ M ), and the calcineurin inhibitor FK506 (1 n M ). These findings indicate that chronic inhibition of Na+,K+-ATPase up-regulates the α1 and β1, but not α2 and β2, isoforms in astrocytes, suggesting a functional coupling of α1β1 complex. They also suggest that intracellular Na+, Ca2+, and calcineurin may be involved in ouabain-induced up-regulation of the enzyme in astrocytes.  相似文献   

13.
Suspension-cultured carrot ( Daucus carota L. cv. Kintoki) cells were grown in calcium (Ca2+)-deficient and normal liquid media. Cell growth was limited by the Ca2+ deficiency. Similar amounts of pectic fractions were extracted from the walls of control and Ca2+-deprived cells, but the fractions from the walls of Ca2+-deprived cells showed a substantial decrease in galacturonic acid content. However, after 15 days of culture, Ca2+-deprived cells released galacturonic acid-rich extracellular polysaccharides at twice the rate of control cells. The polysaccharides consisted of a mixture of several polymers containing predominantly arabinose, galactose and galacturonic acid. Ca2+-deprived cells also secreted three times more extracellular proteins, containing many glycan-hydrolytic enzymes, into the medium than did normal cells. SDS-PAGE analysis revealed several distinct changes in the polypeptide pattern in the medium of control and Ca2+-deprived cells. Activities of α -galactosidase, β -glucosidase and exo- polygalacturonase increased considerably during Ca2+ deficiency, whereas α - l -arabinofuranosidase and β -galactosidase activities were much reduced.  相似文献   

14.
Abstract: A primary histopathological feature of Alzheimer's disease is the accumulation of β-amyloid (Aβ) in the brain of afflicted individuals. However, Aβ is produced continuously as a soluble protein in healthy individuals where it is detected in serum and CSF, suggesting the existence of cellular clearance mechanisms that normally prevent its accumulation and aggregation. Here, we demonstrate that Aβ forms stable complexes with activated α2-macroglobulin (α2M), a physiological ligand for the low-density lipoprotein receptor-related protein (LRP) that is abundantly expressed in the CNS. These α2M/125I-Aβ complexes are immunoreactive with both anti-Aβ and anti-α2M IgG and are stable under various pH conditions, sodium dodecyl sulfate, reducing agents, and boiling. We demonstrate that α2M/125I-Aβ complexes can be degraded by glioblastoma cells and fibroblasts via LRP, because degradation is partially inhibited by receptor-associated protein (RAP), an antagonist of ligand interactions with LRP. In contrast, the degradation of free 125I-Aβ is not inhibited by RAP and thus must be mediated via an LRP-independent pathway. These results suggest that LRP can function as a clearance receptor for Aβ via a physiological ligand.  相似文献   

15.
Abstract: The effects of synthetic β-amyloid (Aβ1–42) on cell viability and cellular Ca2+ homeostasis have been studied in the human neuron-like NT2N cell, which differentiates from a teratocarcinoma cell line, NTera2/C1.D1, by retinoic acid treatment. NT2N viability was measured using morphological criteria and fluorescent live/dead staining and quantified using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide metabolism. Aβ1–42 dose-dependently caused NT2N cell death when it was present in the cell culture for 14 days but had no effect on viability when it was present for 4 days. The lowest effective concentration was 4 µ M , and the strongest effect was produced by 40 µ M . Control NT2N cells produced spontaneous cytosolic Ca2+ oscillations under basal conditions. These oscillations were inhibited dose-dependently (0.4–40 µ M ) by Aβ1–42 that was present in the cell culture for 1 or 4 days. Ca2+ wave frequency was decreased from 0.21 ± 0.02 to 0.05 ± 0.02/min, amplitude from 88 ± 8 to 13 ± 4 n M , and average Ca2+ level from 130 ± 8 to 58 ± 3 n M . The Ca2+ responses to 30 m M K+ and 100 µ M glutamate were not different between control and Aβ-treated cells. Thus, the results do not support the hypothesis that cytosolic early Ca2+ accumulation mediates Aβ-induced NT2N cell death.  相似文献   

16.
Abstract: Cyclic GMP accumulation in pinealocytes is elevated>100-fold by norepinephrine (NE) through a mechanism involving conjoint activation of α1- and β1-adrenergic receptors. Little or no stimulation occurs if either α1- or β1-adrenergic receptors alone are activated. It appears that α1-adrenergic effects are mediated by Ca2+ acting in part through nitric oxide (NO), and β1-adrenergic effects are mediated by Gs. In the study presented here we investigated effects of adrenergic agonists or related postreceptor-active agents on stimulation of pineal cyclic GMP accumulation by the NO generator sodium nitroprusside (NP). The cyclic GMP response to NP (1 m M ) was potentiated by NE and isoproterenol (ISO) but not by phenylephrine, indicating that activation of β1-adrenergic receptors potentiates the effects of NP. Similarly, vasoactive intestinal peptide (VIP), cholera toxin (CTX), and forskolin, all of which are known to mimic the effects of ISO in this system, also potentiated the effects of NP. In contrast, neither dibutyryl cyclic AMP nor agents that elevate intracellular Ca2+ levels caused marked potentiation of the effects of NP on pineal cyclic GMP. Depletion (90%) of Gsα by 21-h treatment with CTX reduced β-adrenergic potentiation of NP. These findings indicate that β-adrenergic agonists and VIP potentiate the effects of NP through a mechanism involving Gs. The molecular basis of this action may be an increase in guanylyl cyclase responsiveness to NO.  相似文献   

17.
Parkinson's disease (PD) is characterized in part by the presence of α-synuclein (α-syn) rich intracellular inclusions (Lewy bodies). Mutations and multiplication of the α-synuclein gene ( SNCA ) are associated with familial PD. Since Ca2+ dyshomeostasis may play an important role in the pathogenesis of PD, we used fluorimetry in fura-2 loaded SH-SY5Y cells to monitor Ca2+ homeostasis in cells stably transfected with either wild-type α-syn, the A53T mutant form, the S129D phosphomimetic mutant or with empty vector (which served as control). Voltage-gated Ca2+ influx evoked by exposure of cells to 50 mM K+ was enhanced in cells expressing all three forms of α-syn, an effect which was due specifically to increased Ca2+ entry via L-type Ca2+ channels. Mobilization of Ca2+ by muscarine was not strikingly modified by any of the α-syn forms, but they all reduced capacitative Ca2+ entry following store depletion caused either by muscarine or thapsigargin. Emptying of stores with cyclopiazonic acid caused similar rises of [Ca2+]i in all cells tested (with the exception of the S129D mutant), and mitochondrial Ca2+ content was unaffected by any form of α-synuclein. However, only WT α-syn transfected cells displayed significantly impaired viability. Our findings suggest that α-syn regulates Ca2+ entry pathways and, consequently, that abnormal α-syn levels may promote neuronal damage through dysregulation of Ca2+ homeostasis.  相似文献   

18.
Abstract. A defined cultivation system was developed for the differentiation of pluripotent embryonic stem cells of the mouse into spontaneously beating cardiomyocytes, allowing investigations of chronotropic responses, as well as electrophysiological studies of different cardioactive drugs in vitro.
The β-adrenoceptor agonists (—)isoprenaline and clenbuterol, the mediators of cAMP metabolism, forsko-lin and isobutylmethylxanthine (IBMX), the α1-adreno-ceptor agonist (—)phenylephrine, and the heart glyco-side digitoxine induced a positive, the muscarinic cholin-oceptor agonist carbachol and L-type Ca2+ channel blockers nisoldipine, gallopamil and diltiazem induced a negative chronotropic response.
In early differentiated cardiomyocytes β1-, α1-, but not β2-adrenoceptors, cholinoceptors, as well as L-type Ca2+ channels participated in the chronotropic response. In terminally differentiated cardiomyocytes β2-adrenoceptors and digitoxine responses were also functionally expressed.
The contractions of spontaneously beating cardiomyocytes were concommitant with rhythmic action potentials very similar to those described for embryonic cardiomyocytes and sinusnode cells. We conclude that cardiomyocytes differentiating from pluripotent embryonic stem cells are able to develop adrenoceptors and cholinoceptors and signal transduction pathways as well as L-type Ca2+ channels as a consequence of cell-cell interactions during embryoid body formation in vitro, independent of the development in living organisms.
The cellular system described may be useful as in vitro assay for toxicological investigations of chronotropic drugs and a model system for studying commitment and cellular differentiation in vitro.  相似文献   

19.
Abstract: The effect of dopamine (DA) receptor stimulation on the distribution of γ protein kinase C (γPKC) in hippocampal slices was assessed. Nanomolar concentrations of DA decreased cytosolic γPKC (56%) without altering membrane γPKC levels, resulting in decreased total γPKC immunoreactivity. The maximal decrease in cytosolic γPKC occurred at 20 min of incubation and was significantly blocked by the D1 DA antagonist SCH 23390 (10−6 M ) but not by the D2 antagonist sulpiride (10−5 M ). The D1 agonists SKF 38393 and A 77636 mimicked the effect of DA with similar responses produced at 10 µ M and 1 n M , respectively. The D2 agonist quinpirole had no effect on γPKC immunoreactivity, thus indicating that this dopaminergic response is mediated through a D1-like receptor. DA had no effect on α, δ, or ζPKC isozyme immunoreactivity in the same hippocampal preparations. The DA-induced decrease in cytosolic γPKC immunoreactivity was blocked by the Ca2+-dependent protease inhibitor N -acetyl-Leu-Leu-norleucinal (100 µ M ) and by the inorganic Ca2+ channel blocker Co2+. The data suggest that DA stimulates a D1-like DA receptor, which increases the influx of Ca2+ and activates the Ca2+-dependent proteolysis of γPKC.  相似文献   

20.
Abstract: The role of protein kinase C (PKC) in modulating the release of the octapeptide cholecystokinin (CCK-8) was investigated in rat hippocampal nerve terminals (synaptosomes). The PKC-activating phorbol ester 4β-phorbol 12,13-dibutyrate (β-PDBu) dose dependently (5–5,000 n M ) increased CCK-8 release in a strictly Ca2+-dependent way. This effect was observed only when synaptosomes were stimulated with the K+A channel blocker 4-aminopyridine (4-AP; 1 m M ) but not with KCI (10–30 m M ). The PDBu-induced exocytosis of CCK-8 was completely blocked by the two selective PKC inhibitors chelerythrine and calphostin-C and was not mimicked by α-PDBu, an inactive phorbol ester. In addition, an analogue of the endogenous PKC activator diacylglycerol, oleoylacetylglycerol, dose dependently increased CCK-8 exocytosis. β-PDBu (50–100 n M ) also stimulated the 4-AP-evoked Ca2+-dependent release of the classic transmitter GABA, which co-localizes with CCK-8 in hippocampal interneurons. As a possible physiological trigger for PKC activation, the role of the metabotropic glutamate receptor was investigated. However, the broad receptor agonist (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid did not stimulate, but instead inhibited, both the CCK-8 and the GABA exocytosis. In conclusion, presynaptic PKC may stimulate exocytosis of distinct types of colocalizing neurotransmitters via modulation of presynaptic K+ channels in rat hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号