首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer surface protein A (OspA) from Borrelia burgdorferi is a predominantly beta-sheet protein comprised of beta-strands beta1-beta21 and a short C-terminal alpha-helix. It contains two globular domains (N and C-terminal domains) and a unique single-layer beta-sheet (central beta-sheet) that connects the two domains. OspA contains an unusually large number of charged amino acid residues. To understand the mechanism of stabilization of this unique beta-sheet protein, thorough thermodynamic investigations of OspA and its truncated mutant lacking a part of the C-terminal domain were conducted using calorimetry and circular dichroism. The stability of OspA was found to be sensitive to pH and salt concentration. The heat capacity curve clearly consisted of two components, and all the thermodynamic parameters were obtained for each step. The thermodynamic parameters associated with the two transitions are consistent with a previously proposed model, in which the first transition corresponds to the unfolding of the C-terminal domain and the last two beta-strands of the central beta-sheet, and the second transition corresponds to that of the N-terminal domain and the first beta-strand of the central beta-sheet in the second peak. The ratio of calorimetric and van't Hoff enthalpies indicates that the first peak includes another thermodynamic intermediate state. Large heat capacity changes were observed for both transitions, indicative of large changes in the exposure of hydrophobic surfaces associated with the transitions. This observation demonstrates that hydrophobic parts are buried efficiently in the native structure in spite of the low content of hydrophobic residues in OspA. By decomposing the enthalpy, entropy, and Gibbs free energy into contributions from different interactions, we found that the enthalpy changes for hydrogen bonding and polar interactions are exceptionally large, indicating that OspA maintains its stability by making full use of its unique beta-sheet and high content of polar residues. These thermodynamic analyses demonstrated that it is possible to maintain protein tertiary structure by making effective use of an unusual amino acid composition.  相似文献   

2.
3.
Luque I  Freire E 《Proteins》2002,49(2):181-190
A major goal in ligand and drug design is the optimization of the binding affinity of selected lead molecules. However, the binding affinity is defined by the free energy of binding, which, in turn, is determined by the enthalpy and entropy changes. Because the binding enthalpy is the term that predominantly reflects the strength of the interactions of the ligand with its target relative to those with the solvent, it is desirable to develop ways of predicting enthalpy changes from structural considerations. The application of structure/enthalpy correlations derived from protein stability data has yielded inconsistent results when applied to small ligands of pharmaceutical interest (MW < 800). Here we present a first attempt at an empirical parameterization of the binding enthalpy for small ligands in terms of structural information. We find that at least three terms need to be considered: (1) the intrinsic enthalpy change that reflects the nature of the interactions between ligand, target, and solvent; (2) the enthalpy associated with any possible conformational change in the protein or ligand upon binding; and, (3) the enthalpy associated with protonation/deprotonation events, if present. As in the case of protein stability, the intrinsic binding enthalpy scales with changes in solvent accessible surface areas. However, an accurate estimation of the intrinsic binding enthalpy requires explicit consideration of long-lived water molecules at the binding interface. The best statistical structure/enthalpy correlation is obtained when buried water molecules within 5-7 A of the ligand are included in the calculations. For all seven protein systems considered (HIV-1 protease, dihydrodipicolinate reductase, Rnase T1, streptavidin, pp60c-Src SH2 domain, Hsp90 molecular chaperone, and bovine beta-trypsin) the binding enthalpy of 25 small molecular weight peptide and nonpeptide ligands can be accounted for with a standard error of +/-0.3 kcal x mol(-1).  相似文献   

4.
The prion protein appears to be unusually susceptible to conformational change, and unlike nearly all other proteins, it can easily be made to convert to alternative misfolded conformations. To understand the basis of this structural plasticity, a detailed thermodynamic characterization of two variants of the mouse prion protein (moPrP), the full-length moPrP (23–231) and the structured C-terminal domain, moPrP (121–231), has been carried out. All thermodynamic parameters governing unfolding, including the changes in enthalpy, entropy, free energy, and heat capacity, were found to be identical for the two protein variants. The N-terminal domain remains unstructured and does not interact with the C-terminal domain in the full-length protein at pH 4. Moreover, the enthalpy and entropy of unfolding of moPrP (121–231) are similar in magnitude to values reported for other proteins of similar size. However, the protein has an unusually high native-state heat capacity, and consequently, the change in heat capacity upon unfolding is much lower than that expected for a protein of similar size. It appears, therefore, that the native state of the prion protein undergoes substantial fluctuations in enthalpy and hence, in structure.  相似文献   

5.
A study on the enthalpy-entropy compensation in protein unfolding   总被引:3,自引:0,他引:3  
A large number of thermodynamic data including the free energy, enthalpy, entropy, and heat capacity changes were collected for the denaturation of various proteins. Regression indicated that remarkable enthalpy-entropy compensation occurred in protein unfolding, which meant that the change in enthalpy was almost compensated by a corresponding change in entropy resulting in a smaller net free energy change. This behavior was proposed to result from the water molecule reorganization, which contributed significantly to the enthalpy and entropy changes but little to the free energy change in protein unfolding. It turned out that the enthalpy-entropy compensation could provide novel insights into the problem of enthalpy and entropy convergence in protein unfolding.  相似文献   

6.
Given the three-dimensional structure of a protein, its thermodynamic properties are calculated using a recently introduced distance constraint model (DCM) within a mean-field treatment. The DCM is constructed from a free energy decomposition that partitions microscopic interactions into a variety of constraint types, i.e., covalent bonds, salt-bridges, hydrogen-bonds, and torsional-forces, each associated with an enthalpy and entropy contribution. A Gibbs ensemble of accessible microstates is defined by a set of topologically distinct mechanical frameworks generated by perturbing away from the native constraint topology. The total enthalpy of a given framework is calculated as a linear sum of enthalpy components over all constraints present. Total entropy is generally a nonadditive property of free energy decompositions. Here, we calculate total entropy as a linear sum of entropy components over a set of independent constraints determined by a graph algorithm that builds up a mechanical framework one constraint at a time, placing constraints with lower entropy before those with greater entropy. This procedure provides a natural mechanism for enthalpy-entropy compensation. A minimal DCM with five phenomenological parameters is found to capture the essential physics relating thermodynamic response to network rigidity. Moreover, two parameters are fixed by simultaneously fitting to heat capacity curves for histidine binding protein and ubiquitin at five different pH conditions. The three free parameter DCM provides a quantitative characterization of conformational flexibility consistent with thermodynamic stability. It is found that native hydrogen bond topology provides a key signature in governing molecular cooperativity and the folding-unfolding transition.  相似文献   

7.
Differential scanning calorimetry (DSC) determines the enthalpy change upon protein unfolding and the melting temperature of the protein. Performing DSC of a protein in the presence of increasing concentrations of specifically-binding ligand yields a series of curves that can be fit to obtain the protein–ligand dissociation constant as done in the fluorescence-based thermal shift assay (FTSA, ThermoFluor, DSF). The enthalpy of unfolding, as directly determined by DSC, helps improving the precision of the fit. If the ligand binding is linked to protonation reactions, the intrinsic binding constant can be determined by performing the affinity determination at a series of pH values. Here, the intrinsic, pH-independent, affinity of acetazolamide binding to carbonic anhydrase (CA) II was determined. A series of high-affinity ligands binding to CAIX, an anticancer drug target, and CAII showed recognition and selectivity for the anticancer isozyme. Performing the DSC experiment in buffers of highly different enthalpies of protonation enabled to observe the ligand unbinding-linked protonation reactions and estimate the intrinsic enthalpy of binding. The heat capacity of combined unfolding and unbinding was determined by varying the ligand concentrations. Taken together, these parameters provided a detailed thermodynamic picture of the linked ligand binding and protein unfolding process.  相似文献   

8.
A thermodynamic analysis of two types of binding of ethidium bromide with DNA: intercalation and binding to the outer surface of a biopolymer has been performed by spectrophotometry. It has been shown that the dominant contribution to the energy of external binding of the ligand to DNA is made by hydrophobic interactions, which lead to less negative values of enthalpy and entropy and more severe negative changes in the heat capacity of complex formation as compared with the intercalation type of binding.  相似文献   

9.
The thermodynamic parameters of the interaction of agonists and antagonists with heart and brain muscarinic receptors were determined. The binding of quinuclidinyl [3H]benzilate and the inhibition of quinuclidinyl benzilate (QNB) binding by agonists and antagonists were examined at temperatures between 2 degrees C and 27 degrees C. The density of specific binding sites and the relative proportions of high- and low-affinity binding components of drugs were unaffected by the temperature changes. The binding of atropine was entropy driven in brain and heart membranes. In contrast, net values of these thermodynamic parameters for QNB binding and for the high-affinity binding component of pirenzepine to brain membranes were decreased with the enhancement of the temperature. The low-affinity binding component of the agonists carbachol, oxotremorine and pilocarpine was enthalpy driven. Their high-affinity binding component was entropy driven at 2 degrees C and became enthalpy driven when the incubation temperature was increased. The guanine nucleotide Gpp[NH]p partly prevented the temperature-dependent decrease of net entropy and enthalpy values. Considering that the net changes of thermodynamic parameters are relevant of the interactions between the ligand, the receptor protein and the adjoining membranous molecules, a three-state conformational model is proposed for the muscarinic receptor protein. The receptor selectivity is reappreciated owing to these three states of the receptor protein and the different components of the muscarinic receptor complexes.  相似文献   

10.
In this paper, a general procedure is described to determine thermodynamic parameters associated with the interaction of thrombin receptor antagonistic peptides (TRAPs) with immobilized nonpolar ligands. The results show that these interactions were associated with nonlinear van't Hoff dependencies over a wide temperature range. Moreover, changes in relevant thermodynamic parameters, namely the changes in Gibbs free energy of interaction, DeltaG(0)assoc, enthalpy of interaction, DeltaH(0)assoc, entropy of interaction, DeltaS(0)assoc, and heat capacity, DeltaC(0)p, have been related to the structural properties of these TRAP analogs. The implications of these investigations for the design of thrombin receptor agonists/antagonists with structures stabilized by intramolecular hydrophobic interactions are discussed.  相似文献   

11.
Unfolding of the small alpha-amylase inhibitor tendamistat (74 residues, 2 disulfide bridges) has been characterized thermodynamically by high sensitivity scanning microcalorimetry. To link the stability parameters with structural information we use heat capacity group parameters and water accessible surface areas to calculate the change in heat capacity on unfolding of tendamistat. Our results show that both the group parameter and surface area approaches provide a reasonable, though not perfect, basis for delta Cp calculations. When using the experimentally determined temperature-independent heat capacity increase of 2.89 kJ mol-1 K-1 tendamistat exhibits convergence of thermodynamic parameters at about 140 degrees C, in agreement with recent predictions of the temperature at which the hydrophobic hydration is supposed to disappear. Despite the apparent support of this new view of the hydrophobic effect, there are inconsistencies in the interpretation of the thermodynamic parameters and these are addressed in the Discussion. The specific stability of tendamistat is similar to that of modified bovine pancreatic trypsin inhibitor, with only two of the native three disulfide bridges intact. This observation confirms our previous conclusion that disulfide bridges affect significantly the enthalpy and entropy of unfolding. The recent study by Doig & Williams provides additional convincing support for this conclusion. The predictive scheme proposed by these authors permits a fair estimate of the Gibbs free energy and enthalpy changes of these two proteins.  相似文献   

12.
Matulis D  Kranz JK  Salemme FR  Todd MJ 《Biochemistry》2005,44(13):5258-5266
ThermoFluor (a miniaturized high-throughput protein stability assay) was used to analyze the linkage between protein thermal stability and ligand binding. Equilibrium binding ligands increase protein thermal stability by an amount proportional to the concentration and affinity of the ligand. Binding constants (K(b)) were measured by examining the systematic effect of ligand concentration on protein stability. The precise ligand effects depend on the thermodynamics of protein stability: in particular, the unfolding enthalpy. An extension of current theoretical treatments was developed for tight binding inhibitors, where ligand effect on T(m) can also reveal binding stoichiometry. A thermodynamic analysis of carbonic anhydrase by differential scanning calorimetry (DSC) enabled a dissection of the Gibbs free energy of stability into enthalpic and entropic components. Under certain conditions, thermal stability increased by over 30 degrees C; the heat capacity of protein unfolding was estimated from the dependence of calorimetric enthalpy on T(m). The binding affinity of six sulfonamide inhibitors to two isozymes (human type 1 and bovine type 2) was analyzed by both ThermoFluor and isothermal titration calorimetry (ITC), resulting in a good correlation in the rank ordering of ligand affinity. This combined investigation by ThermoFluor, ITC, and DSC provides a detailed picture of the linkage between ligand binding and protein stability. The systematic effect of ligands on stability is shown to be a general tool to measure affinity.  相似文献   

13.
Protein interactions with urea and guanidinium chloride. A calorimetric study.   总被引:33,自引:0,他引:33  
The interaction of urea and guanidinium chloride with proteins has been studied calorimetrically by titrating protein solutions with denaturants at various fixed temperatures, and by scanning them with temperature at various fixed concentrations of denaturants. It has been shown that the observed heat effects can be described in terms of a simple binding model with independent and similar binding sites. Using the calorimetric data, the number of apparent binding sites for urea and guanidinium chloride have been estimated for three proteins in their unfolded and native states (ribonuclease A, hen egg white lysozyme and cytochrome c). The intrinsic and total thermodynamic characteristics of their binding (the binding constant, the Gibbs energy, enthalpy, entropy and heat capacity effect of binding) have also been determined. It is found that the binding of urea and guanidinium chloride by protein is accompanied by a significant decrease of enthalpy and entropy. At all concentrations of denaturants the enthalpy term slightly dominates the entropy term in the Gibbs energy function. Correlation analysis of the number of binding sites and structural characteristics of these proteins suggests that the binding sites for urea and guanidinium chloride are likely to be formed by several hydrogen bonding groups. This type of binding of the denaturant molecules should lead to a significant restriction of conformational freedom within the polypeptide chain. This raises a doubt as to whether a polypeptide chain in concentrated solutions of denaturants can be considered as a standard of a random coil conformation.  相似文献   

14.
Kinetics of thermal inactivation of acrylodan-labeled cAMP dependent protein kinase catalytic subunit, its binary complexes with ATP and peptide inhibitor PKI[5–24], respectively, and the ternary complex involving both of these ligands were studied at different temperatures (5–50 °C). The thermodynamic parameters ΔH and ΔS for ligand binding equilibria as well as for the allosteric interaction between the binding sites of these ligands were obtained by using the Van’t Hoff analysis. The results indicated that more inter- and intra-molecular non-covalent bonds were involved in ATP binding with the protein when compared to the peptide binding. Similarly, nucleotide and peptide binding steps were accompanied with different entropy effects, while almost no entropy change accompanied PKI[5–24] binding, suggesting that the protein flexibility was not affected in this case. Differently from the binary complex formation the ternary complex formation was accompanied by a significant entropy change and with intensive formation of new non-covalent interactions (ΔH). At the same time both ligand binding steps as well as the allosteric interaction between ligand binding sites could be described by a common entropy–enthalpy compensation plot, pointing to a similar mechanism of these phenomena. It was concluded that numerous weak interactions govern the allostery of cAMP dependent protein kinase catalytic subunit.  相似文献   

15.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase), a ubiquitous enzyme preventing a deleterious incorporation of uracil into DNA, has been thought of as a novel target for anticancer and antiviral drug design. The interaction of Plasmodium falciparum dUTPase (PfdUTPase) with deoxyuridine derivatives (dU, dUMP, dUDP and dUpNHpp) has been studied thermodynamically by both isothermal titration and differential scanning calorimetry. ITC shows no cooperativity for the binding of these derivatives. Dependencies in the binding thermodynamic parameters (enthalpy, entropy and Gibbs energy changes) with the number of phosphate groups in the nucleotide are obtained, and from the heat capacity changes no significant conformational changes upon binding are inferred. DSC shows PfdUTPase trimer is very stable but denatures irreversibly, with a more complex denaturation profile than other homologous trimeric dUTPases. The presence of magnesium ions does not influence the denaturation profile, while the presence of deoxyuridine derivatives increases the stability. The increase depends upon nucleotide concentration and type, with dUDP having the greater effect.  相似文献   

16.
D Xie  V Bhakuni  E Freire 《Biochemistry》1991,30(44):10673-10678
High-sensitivity differential scanning calorimetry has been used to characterize the energetics of the molten globule state of apo-alpha-lactalbumin. This characterization has been possible by performing temperature scans at different guanidine hydrochloride (GuHCl) concentrations in order to experimentally define the temperature-GuHCl stability surface of the protein. Multidimensional analysis of the heat capacity surface has allowed simultaneous resolution of the energetics of the unfolded and molten globule states. These experiments indicate that the intrinsic enthalpy difference (i.e., excluding additional contributions such as those arising from differential GuHCl binding) between the unfolded and native states is 31.8 kcal/mol at 25 degrees C whereas that of the molten globule and native states is only 7.7 kcal/mol. At the same temperature, the entropy changes are 99.2 and 23.7 cal/K.mol and the heat capacity changes are 1821 and 326 cal/K.mol, respectively. Analysis of the thermodynamic data indicates that in passing from the native to the molten globule state only approximately 19% of the hydrogen bonds are broken. In addition, the magnitude of delta Cp for the molten globule suggests that water does not largely penetrate into the interior of the molten globule, implying that significant hydrophobic interactions are still present in this state. These parameters provide precise energetic constraints to the allowed structural conformations of the molten globule.  相似文献   

17.
Small monomeric proteins from mesophilic and thermophilic organisms were studied. They have close structural and physical and chemical properties but vary in thermal stability. A thermodynamic analysis of heat unfolding was made and integral enthalpy of unfolding (DeltaH(unf)), heat capacity of hydration (DeltaC(p)(hyd)) and enthalpy of hydration (DeltaH(hyd)) and of the buried surface area (DeltaASA) of nonpolar and polar groups as well as the enthalpy of disruption of intramolecular interaction (DeltaH(int) in gas phase) at 298 K were determined. The absence of correlation between protein thermostability and energetic components suggests that regulatory mechanism of protein thermal stabilization has entropic nature.  相似文献   

18.
Hughesman CB  Turner RF  Haynes CA 《Biochemistry》2011,50(23):5354-5368
Melting thermodynamic data obtained by differential scanning calorimetry (DSC) are reported for 43 duplexed oligonucleotides containing one or more locked nucleic acid (LNA) substitutions. The measured heat capacity change (ΔC(p)) for the helix-to-coil transition is used to compute the changes in enthalpy and entropy for melting of an LNA-bearing duplex at the T(m) of its corresponding isosequential unmodified DNA duplex to allow rigorous thermodynamic analysis of the stability enhancements provided by LNA substitutions. Contrary to previous studies, our analysis shows that the origin of the improved stability is almost exclusively a net reduction (ΔΔS° < 0) in the entropy gain accompanying the helix-to-coil transition, with the magnitude of the reduction dependent on the type of nucleobase and its base pairing properties. This knowledge and our average measured value for ΔC(p) of 42 ± 11 cal mol(-1) K(-1) bp(-1) are then used to derive a new model that accurately predicts melting thermodynamics and the increased melting temperature (ΔT(m)) of heteroduplexes formed between an unmodified DNA strand and a complementary strand containing any number and configuration of standard LNA nucleotides A, T, C, and G. This single-base thermodynamic (SBT) model requires only four entropy-related parameters in addition to ΔC(p). Finally, DSC data for 20 duplexes containing the nucleobase-modified LNAs 2-aminoadenine (D) and 2-thiothymine (H) are reported and used to determine SBT model parameters for D and H. The data and model suggest that along with the greater stability enhancement provided by D and H bases relative to their corresponding A and T analogues, the unique pseudocomplementary properties of D-H base pairs may make their use appealing for in vitro and in vivo applications.  相似文献   

19.
The temperature dependence of preferential solvent interactions with ribonuclease A in aqueous solutions of 30% sorbitol, 0.6 M MgCl2, and 0.6 M MgSO4 at low pH (1.5 and 2.0) and high pH (5.5) has been investigated. This protein was stabilized by all three co-solvents, more so at low pH than high pH (expect 0.6 M MgCl2 at pH 5.5). The preferential hydration of protein in all three co-solvents was high at temperatures below 30 degrees C and decreased with a further increase in temperature (for 0.6 M MgCl2 at pH 5.5, this was not significant), indicating a greater thermodynamic instability at low temperature than at high temperature. The preferential hydration of denatured protein (low pH, high temperature) was always greater than that of native protein (high pH, high temperature). In 30% sorbitol, the interaction passed to preferential binding at 45% for native ribonuclease A and at 55 degrees C for the denatured protein. Availability of the temperature dependence of the variation with sorbitol concentration of the chemical potential of the protein, (delta mu(2)/delta m3)T,p,m2, permitted calculation of the corresponding enthalpy and entropy parameters. Combination with available data on sorbitol concentration dependence of this interaction parameter gave (approximate) values of the transfer enthalpy, delta H2,tr, and transfer entropy delta S2,tr. Transfer of ribonuclease A from water into 30% sorbitol is characterized by positive values of the transfer free energy, transfer enthalpy, transfer entropy, and transfer heat capacity. On denaturation, the transfer enthalpy becomes more positive. This increment, however, is small relative to both the enthalpy of unfolding in water and to the transfer enthalpy of the native protein from water a 30% sorbitol solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号