首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spring wheat cv. Minaret was grown to maturity under three carbon dioxide (CO2) and two ozone (O3) concentrations in open-top chambers (OTC). Green leaf area index (LAI) was increased by elevated CO2 under ambient O3 conditions as a direct result of increases in tillering, rather than individual leaf areas. Yellow LAI was also greater in the 550 and 680 μmol mol–1 CO2 treatments than in the chambered ambient control; individual leaves on the main shoot senesced more rapidly under 550 μmol mol–1 CO2, but senescence was delayed at 680 μmol mol–1 CO2. Fractional light interception (f) during the vegetative period was up to 26% greater under 680 μmol mol–1 CO2 than in the control treatment, but seasonal accumulated intercepted radiation was only increased by 8%. As a result of greater carbon assimilation during canopy development, plants grown under elevated CO2 were taller at anthesis and stem and ear biomass were 27 and 16% greater than in control plants. At maturity, yield was 30% greater in the 680 μmol mol–1 CO2 treatment, due to a combination of increases in the number of ears per m–2, grain number per ear and individual grain weight (IGW). Exposure to a seasonal mean (7 h d–1) of 84 nmol mol–1 O3 under ambient CO2 decreased green LAI and increased yellow LAI, thereby reducing both f and accumulated intercepted radiation by ≈ 16%. Individual leaves senesced completely 7–28 days earlier than in control plants. At anthesis, the plants were shorter than controls and exhibited reductions in stem and ear biomass of 15 and 23%. Grain yield at maturity was decreased by 30% due to a combination of reductions in ear number m–2, the numbers of grains per spikelet and per ear and IGW. The presence of elevated CO2 reduced the rate of O3-induced leaf senescence and resulted in the maintenance of a higher green LAI during vegetative growth under ambient CO2 conditions. Grain yields at maturity were nevertheless lower than those obtained in the corresponding elevated CO2 treatments in the absence of elevated O3. Thus, although the presence of elevated CO2 reduced the damaging impact of ozone on radiation interception and vegetative growth, substantial yield losses were nevertheless induced. These data suggest that spring wheat may be susceptible to O3-induced injury during anthesis irrespective of the atmospheric CO2 concentration. Possible deleterious mechanisms operating through effects on pollen viability, seed set and the duration of grain filling are discussed.  相似文献   

2.
We examined the hypothesis that elevated CO2 concentration would increase NO3 absorption and assimilation using intact wheat canopies (Triticum aestivum cv. Veery 10). Nitrate consumption, the sum of plant absorption and nitrogen loss, was continuously monitored for 23 d following germination under two CO2 concentrations (360 and 1000 μmol mol–1 CO2) and two root zone NO3 concentrations (100 and 1000 mmol m3 NO3). The plants were grown at high density (1780 m–2) in a 28 m3 controlled environment chamber using solution culture techniques. Wheat responded to 1000 μmol mol–1 CO2 by increasing carbon allocation to root biomass production. Elevated CO2 also increased root zone NO3 consumption, but most of this increase did not result in higher biomass nitrogen. Rather, nitrogen loss accounted for the greatest part of the difference in NO3 consumption between the elevated and ambient [CO2] treatments. The total amount of NO3-N absorbed by roots or the amount of NO3-N assimilated per unit area did not significantly differ between elevated and ambient [CO2] treatments. Instead, specific leaf organic nitrogen content declined, and NO3 accumulated in canopies growing under 1000 μmol mol–1 CO2. Our results indicated that 1000 μmol mol–1 CO2 diminished NO3 assimilation. If NO3 assimilation were impaired by high [CO2], then this offers an explanation for why organic nitrogen contents are often observed to decline in elevated [CO2] environments.  相似文献   

3.
Spring wheat [ Triticum aestivum (L). cv. Yecora Rojo] was grown from December 1992 to May 1993 under two atmospheric CO2 concentrations, 550 μmol mol–1 for high-CO2 plots, and 370 μmol mol–1 for control plots, using a Free-Air CO2 Enrichment (FACE) apparatus. In addition to the two levels of atmospheric CO2, there were ample and limiting levels of water supply through a subsurface trip irrigation system in a strip, split-plot design. In order to examine the temporal and spatial root distribution, root cores were extracted at six growth stages during the season at in-row and inter-row positions using a soil core device (86 mm ID, 1.0 m length). Such information would help determine whether and to what extent root morphology is changed by alteration of two important factors, atmospheric CO2 and soil water, in this agricultural ecosystem. Wheat root growth increased under elevated CO2 conditions during all observed developmental stages. A maximum of 37% increase in total root dry mass in the FACE vs. Control plots was observed during the period of stem elongation. Greater root growth rates were calculated due to CO2 enhancement until anthesis. During the early vegetative growth, root dry mass of the inter-row space was significantly higher for FACE than for Control treatments suggesting that elevated CO2 promoted the production of first-order lateral roots per main axis. Then, during the reproductive period of growth, more branching of lateral roots in the FACE treatment occurred due to water stress. Significant higher root dry mass was measured in the inter-row space of the FACE plots where soil water supply was limiting. These sequential responses in root growth and morphology to elevated CO2 and reduced soil water supports the hypothesis that plants grown in a high-CO2 environment may better compensate soil-water-stress conditions.  相似文献   

4.
利用开顶式气室对春小麦进行了一个生长季的CO2倍增盆栽实验,土壤水分控制为3个水平(分别为田间持水量(FWC)的80%、60%、40%).结果显示,CO2倍增显著提高小麦的光合速率.但在相同的CO2测定浓度下, 生长在加倍CO2浓度下的小麦的光合速率比当前CO2浓度下小麦低22%.高CO2浓度显著促进小麦生长,相对增加幅度在适宜水分下最大,为14.8%.80%FWC水分条件下高CO2使植株的干重/高度比增加15.7%.高CO2条件下,小麦的蒸腾速率降低、累积耗水量减少、水分利用效率(WUE)提高,WUE的提高幅度在适宜水分下最大,为30%.干旱(40%FWC)使小麦地上干重和WUE在当前CO2条件下分别降低72%和19%,加倍CO2条件下降低幅度较大,分别为76%和23%.根据以上结果得出结论: (1) 高CO2条件下, 小麦的光合速率、地上生物量和水分利用效率提高;(2) 植物长期生长于高CO2浓度导致光合能力降低;(3) 高CO2对植物侧向生长的促进作用大于垂直生长,即高CO2下植株将相对粗壮;(4) 高CO2对植物的生态效应依赖于土壤水分,在适宜水分下相对较大;(5) 在未来高CO2条件下,干旱引起的减产和水分利用效率减低幅度将会更大.  相似文献   

5.
We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 μmol m−2 s−1) and using two CO2 concentrations, 360 and 1200 μmol mol−1. Photosynthetically active radiation (400–700 nm) was attenuated slightly faster through canopies grown in 360μmol mol−1 than through canopies grown in 1200μmol mol−1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200μmol mol−1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p≤ 0.05) than for canopies grown in 360μmol mol−1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 °C over 5d increased starch, fructan and glucose levels in canopies grown in 1200μmol mol−1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.  相似文献   

6.
7.
CO2浓度升高和干旱对春小麦生长和水分利用的生态效应   总被引:6,自引:0,他引:6  
利用开顶式气室对春小麦进行了一个生长季的CO2倍增盆栽实验,土壤水分控制为3个水平(分别为田间持水量(FWC)的80%,60%,40%)。结果显示,CO2倍增显提高小麦的光合速率。但在相同的CO2测定浓度下,生长在加倍CO2浓度下的小麦的光合速率比当前CO2浓度下小麦低22%。高CO2浓度显促进小麦生长,相对增加幅度在适宜水分下最大为14.8%。80%FWC水分条件下高CO2使植株的干重/高度比增加15.7%,高CO2条件下,小麦的蒸腾速率降低,累积耗水量减少,水分利用效率(WUE)提高,WUE的提高幅度在适宜水分下最大,为30%。干旱(40%FWC)使小麦地上干重和WUE在当前CO2条件下分别降低72%和19%,加倍CO2条件下降低幅度较大,分别为76%和23%。根据以上结果得出结论:(1)高CO2条件下,小麦的光合速率,地上生物量和水分利用效率提高;(2)植物长期生长于高CO2浓度导致光合能力降低;(3)高CO2对植物侧向生长的促进作用大于垂直生长,即高CO2下植株将相对粗壮;(4)高CO2对植物的生态效应依赖于土壤水分,在适宜水分下相对较大;(4)在未来高CO2条件下,干旱引起的减产和水分利用效率减低幅度将会更大。  相似文献   

8.
UV—B辐射对小麦叶片H2O2代谢的影响   总被引:11,自引:1,他引:11       下载免费PDF全文
研究了温室种植的小麦在0(CK)、8.82kJ/m^2(T1)和12.6kJ/m^2(T2)三种剂量的紫外线B(UV-B)辐射下H2O2含量的变化及其机理。UV-B辐射下H2O2、还原型抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量增加,抗坏血酸过氧化物酶(APx)和谷胱甘肽不原酶(GR)活性升高,脂肪酸不饱和度指数(IUFA)降低。SDS-PAGE谱图没有质上的差异,但凝胶着色深浅有变化。分析  相似文献   

9.
Straw from wheat plants grown at ambient and elevated atmospheric CO2 concentrations was placed in litterbags in a grass fallow field and a wheat field. The CO2 treatment induced an increase in straw concentration of ash‐free dry mass from 84% to 93% and a decrease in nitrogen concentration from 0.43% to 0.34%. After five months of decomposition, less than 50% of the straw was decomposed. The content of ash‐free dry mass remaining in straw from plants grown at elevated CO2 was significantly higher than that from plants grown at ambient CO2 (4.02 vs. 3.69 g AFDM per litterbag in the fallow field and 3.40 vs. 2.67 g AFDM per litterbag when buried in the wheat field). The immobilization of nitrogen during decomposition was significantly higher in the ambient straw, and there was a significant negative correlation between the content of organic matter remaining per litterbag and the nitrogen concentration in the recovered straw samples. After five months of decomposition, hyphal biomass was significantly lower in straw from plants grown at elevated CO2 (? 30% and ?13% in the fallow and wheat field, respectively). Bacterial biomass was not significantly affected by the CO2 induced changes in the litter quality, but the lower decomposition rate and fewer bacterial grazers in the straw from plants grown at elevated CO2 together indicate reduced microbial activity and turnover. Notwithstanding this, these data show that growth at elevated atmospheric CO2 concentration results in slower decomposition of wheat straw, but the effect is probably of minor importance compared to the effect of varying crops, agricultural practise or changing land use.  相似文献   

10.
 通过对不同土壤水分状况、不同CO2浓度条件下春小麦叶片气孔的观测结果表明:干旱和CO2浓度升高不仅影响叶片气孔密度,而且也影响其分布。随干旱程度的加剧,气孔密度有明显的上升趋势,气孔在叶片上的分布趋向均匀;随CO2浓度的升高,气孔密度有明显的下降趋势,其分布也趋向均匀。水分状况和CO2浓度相同时,气孔密度及分布受不同温度的影响。  相似文献   

11.
通过对不同土壤水分状况、不同 CO2 浓度条件下春小麦叶片气孔的观测结果表明 :干旱和 CO2 浓度升高不仅影响叶片气孔密度 ,而且也影响其分布。随干旱程度的加剧 ,气孔密度有明显的上升趋势 ,气孔在叶片上的分布趋向均匀 ;随 CO2 浓度的升高 ,气孔密度有明显的下降趋势 ,其分布也趋向均匀。水分状况和 CO2 浓度相同时 ,气孔密度及分布受不同温度的影响  相似文献   

12.
  总被引:1,自引:0,他引:1  
  相似文献   

13.
基于生理指标与籽粒产量关系的小麦品种抗冻性分析   总被引:3,自引:0,他引:3  
以20个冬小麦品种为材料进行盆栽试验,对其在低温胁迫条件下功能叶超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性,丙二醛(MDA)、可溶性蛋白、可溶性糖含量以及籽粒产量、千粒重和籽粒形态性状进行测定.结果表明:拔节初期麦苗经-4 ℃低温胁迫后,不同品种冬小麦籽粒形态性状和产量性状均发生变化,绝大多数小麦品种籽粒长宽比、圆度和不育小穗数均增加,籽粒等效直径和面积及千粒重和籽粒产量均下降.通径分析表明,拔节初期低温处理后,功能叶SOD活性和可溶性糖含量是影响籽粒产量的主导因素,其中SOD活性对籽粒产量的直接影响较大,直接通径系数为-0.578.以籽粒产量下降的百分数作为小麦抗冻性评价的标准,可将20个小麦品种划分为3类:强抗冻类型的济麦19、济麦20、良星99、山农1135、山农8355、泰山23、泰山9818、汶农6号和烟农21,弱抗冻类型的临麦2号、潍麦8号、烟农19和淄麦12号,而其余7个品种属中度抗冻类型.苗期综合评价值(D值)与籽粒产量下降的百分数之间呈显著负相关(r=-0.512*),说明小麦苗期抗冻性强有利于获得较高的籽粒产量.苗期是小麦抗冻性鉴别选择的重要时期.  相似文献   

14.
Winter wheat (Triticum aestivum L., ev. Mercia) was grown in a controlled-environment facility at two CO2 concentrations (targets 350 and 700 μmol mol?1), and two temperature regimes (tracking ambient and ambient + 4°C). Observations of phenology, canopy growth, dry matter production and grain yield were used to test the ARCWHEAT1 simulation model. Dry-matter production and grain yield were increased at elevated CO2 concentration (27 and 39%, respectively) and reduced at increased temperature (?16 and ?35%, respectively). ARCWHEAT1 substantially underestimated canopy growth for all treatments. However, differences in the facility environment from field conditions over the winter, indicated by the unusually rapid canopy growth observed in this period, meant that empirical model relationships were being used outside the conditions for which they were developed. The ARCWHEAT productivity submodel, given observed green area indices as inputs, overestimated the effect of CO2 on productivity. An alternative, more mechanistic submodel of productivity, based on the SUCROS87 and Farquhar & von Caemmerer models, simulated observed crop biomass very closely. When these productivity simulations were inputed into the ARCWHEAT1 partitioning and grain-fill submodels, grain yield was predicted poorly, mainly as a result of the assumption that the number of grains is proportional to total growth during a short pre-anthesis phase. While yield was not correlated with growth in this phase, it was correlated with growth in longer pre-anthesis phases, indicating that ARCWHEAT1 could be improved by taking into account the contribution of earlier growth in determining yield.  相似文献   

15.
Cu2+和Zn2+对普通小麦幼苗生长的影响   总被引:1,自引:0,他引:1  
Zn^2+在植物体中参与生长素的合成和某些酶系统的活动;Cu^2+在催化氧化还原反应中起作用,是植物体内多种氧化酶的组成部分,与光合作用密切相关,在脂肪代谢、蛋白质分解中有一定的作用。当植物体内Cu^2+和Zn^2+含量超过一定浓度时对细胞有较大的毒害,危害植物的生长和发育,并可经食物链富集危害人的健康。本文研究了相同浓度的Cu^2+和Zn^2+对普通小麦幼苗生理生化特征的影响,以期为防止金属离子污染和培育抗性品种提供参考数据。  相似文献   

16.
    
Aluminum (Al) toxicity is a major factor limiting plant growth in acid soils. Elevated atmospheric CO2 [CO2] enhances plant growth. However, there is no report on the effect of elevated [CO2] on growth of plant genotypes differing in Al tolerance grown in acid soils. We investigated the effect of short‐term elevated [CO2] on growth of Al‐tolerant (ET8) and Al‐sensitive (ES8) wheat plants and malate exudation from root apices by growing them in acid soils under ambient [CO2] and elevated [CO2] using open‐top chambers. Exposure of ET8 plants to elevated [CO2] enhanced root biomass only. In contrast, shoot biomass of ES8 was enhanced by elevated [CO2]. Given that exudation of malate to detoxify apoplastic Al is a mechanism for Al tolerance in wheat plants, ET8 plants exuded greater amounts of malate from root apices than ES8 plants under both ambient and elevated [CO2]. These results indicate that elevated [CO2] has no effect on malate exudation in both ET8 and ES8 plants. These novel findings have important implications for our understanding how plants respond to elevated [CO2] grown in unfavorable edaphic conditions in general and in acid soils in particular.  相似文献   

17.
Winter wheat (Triticum aestivum L., cv. Mercia) was grown in chambers under light and temperature conditions similar to the UK field environment for the 1990/1991 growing season at two levels each of atmospheric CO2 concentration (seasonal means: 361 and 692 μmol mol?1), temperature (tracking ambient and ambient +4°C) and nitrogen application (equivalent to 87 and 489 kg ha?1 total N applied). Total dry matter productivity through the season, the maximum number of shoots and final ear number were stimulated by CO2 enrichment at both levels of the temperature and N treatments. At high N, there was a CO2-induced stimulation of grain yield (+15%) similar to that for total crop dry mass (+12%), and there was no significant interaction with temperature. This contrasts with other studies, where positive interactions between the effects of increases in temperature and CO2 have been found. Temperature had a direct, negative effect on yield at both levels of the N and CO2 treatments. This could be explained by the temperature-dependent shortening of the phenological stages, and therefore, the time available for accumulating resources for grain formation. At high N, there was also a reduction in grain set at ambient +4°C temperature, but the overall negative effect of warmer temperature was greater on the number of grains (-37%) than on yield (-18%), due to a compensating increase in average grain mass. At low N, despite increasing total crop dry mass and the number of ears, elevated CO2 did not increase grain yield and caused a significant decrease under ambient temperature conditions. This can be explained in terms of a stimulation of early vegetative growth by CO2 enrichment leading to a reduction in the amount of N available later for the formation and filling of grain.  相似文献   

18.
WP1是小麦种子中最主要的阳离子过氧化物酶,该酶不仅参与种子的发育过程,而且影响面粉的加工品质。首先构建了WP1基因原核表达载体pET28a-WP1,并将其转化到T7 Expression大肠杆菌菌株中诱导表达。His-tag融合的WP1主要以包涵体形式存在,使用Ni-NTA亲和层析柱在变性条件下进行纯化,获得纯度大于98%的重组蛋白。重组WP1经尿素梯度透析复性溶解后免疫新西兰大白兔,最终获得WP1多克隆抗体。ELISA分析结果显示制备的WP1兔抗血清的效价大于1∶625 000;Western blotting结果证明制备的多克隆抗体对WP1具有很好的专一性。  相似文献   

19.
    
Winter wheat was grown at ambient and elevated (ambient plus 350 μL L–1) CO2 concentrations in open top chambers and in field-tracking sun-lit climatized enclosures (elevated is 718 μL L–1). There was no significant effect of CO2 concentration on sheath, leaf and root biomass and leaf area in the early spring (January to April). 24-h canopy CO2 exchange rate (CCER) was not significantly affected either. However, elevated CO2 concentration increased CCER at midday, decreased evapotranspiration rate and increased instantaneous water-use-efficiency during early spring. Leaf, sheath and root nitrogen concentration per unit dry weight decreased and nonstructural carbohydrate concentration increased under elevated CO2, and N-uptake per unit ground area decreased significantly (– 22%) towards the end of this period. These results contrast with results from the final harvest, when grain yield and biomass were increased by 19% under elevated CO2. N concentration per dry weight was reduced by 5%, but N-uptake per unit ground area was significantly higher (+ 11%) for the elevated CO2 treatment. 24-h and midday-CCER increased significantly more in late spring (period of 21 April to 30 May) (respectively by + 40% and 53%) than in the early spring (respectively 5% and 19%) in response to elevated CO2. Midday evapotranspiration rate was reduced less by elevated CO2 in the late spring (– 13%) than in early spring (– 21%). The CO2 response of midday and 24-h CCER decreased again (+ 27% and + 23% resp.) towards the end of the growing season. We conclude that the low response to CO2 concentration during the early spring was associated with a growth-restriction, caused by low temperature and irradiance levels. The reduction of nitrogen concentration, the increase of nonstructural carbohydrate, and the lower evapotranspiration indicated that CO2 did have an effect towards the end of early spring, but not on biomass accumulation. Regression analysis showed that both irradiance and temperature affected the response to CO2.  相似文献   

20.
Microsatellite markers Xgwmand Xgdmwere used to map the S1, S2, and S3genes of the induced sphaerococcoid mutants of Triticum aestivumL. and to analyze the introgressive lines of common wheat, obtained by crossing several common wheat cultivars to T. timopheeviiZhuk.; these lines carry the Lrgenes of resistance to leaf rust. All sphaerococcoid genes were linked to centromeric markers of the short and long arms of chromosomes of homoeologous group 3 of T. aestivum: the S1locus was located between the markers Xgdm72and Xgwm456; the S2gene, betweenXgwm845and Xgwm566; and the S3was located between Xgwm2and Xgwm720. The introgressive lines of common wheat carry the following substitutions from T. timopheevii, most of 2A and 2B and telomeric region of the 5AL chromosome in the line 821, the same introgression and also the completely substituted chromosome 4B in line 837, and the partially substituted chromosomes 2A and 2B in line 842. The introgression of the genomic material fromT. timopheeviiinto the chromosomes of homoeologous group 2 was the common trait of all three lines resistant to leaf rust. The authors discuss the feasibility of using microsatellite-derived data for analyzing nonmapped wheat species, linking new genes to wheat molecular genetic maps, and analyzing wheat genomes of diverse hybrid origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号