首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1. Some physicochemical properties of transferrin from three marsupials, viz a possum (Trachosurus vulpecula), a kangaroo (Macropus fuliginosus) and the quokka (Setonix brachyurus) were studied and compared with those of transferrins from mammalian and non-mammalian vertebrate species. 2. The molecular weight of the marsupial transferrins fell within the range of 76,000-79,000 daltons. 3. The marsupial transferrins were similar to the transferrins of eutherian mammals with respect to optical spectral properties, iron binding capacity and the pH-dependence of iron binding, and iron release mediated by 2,3-DPG. 4. The amino acid compositions of the marsupial transferrins were compared with each other and with the transferrins from the other vertebrate species. The compositions of the marsupial transferrin were closely related to each other, and also showed similarities with transferrins from eutherian mammals and chicken ovotransferrin.  相似文献   

2.
The suprachiasmatic nucleus (SCN) of the hypothalamus houses the main mammalian circadian clock. This clock is reset by light-dark cues and stimuli that evoke arousal. Photic information is relayed directly to the SCN via the retinohypothalamic tract (RHT) and indirectly via the geniculohypothalamic tract, which originates from retinally innervated cells of the thalamic intergeniculate leaflet (IGL). In addition, pathways from the dorsal and median raphe (DR and MR) convey arousal state information to the IGL and SCN, respectively. The SCN regulates many physiological events in the body via a network of efferent connections to areas of the brain such as the habenula (Hb) in the epithalamus, subparaventricular zone (SPVZ) of the hypothalamus and locus coeruleus of the brainstem-areas of the brain associated with arousal and behavioral activation. Substance P (SP) and the neurokinin-1 (NK-1) receptor are present in the rat SCN and IGL, and SP acting via the NK-1 receptor alters SCN neuronal activity and resets the circadian clock in this species. However, the distribution and role of SP and NK-1 in the circadian system of other rodent species are largely unknown. Here we use immunohistochemical techniques to map the novel distribution of SP and NK-1 in the hypothalamus, thalamus and brainstem of the Alaskan northern red-backed vole, Clethrionomys rutilus, a species of rodent currently being used in circadian biology research. Interestingly, the pattern of immunoreactivity for SP in the red-backed vole SCN was very different from that seen in many other nocturnal and diurnal rodents.  相似文献   

3.
B Rusak 《Federation proceedings》1979,38(12):2589-2595
The identification of a direct retinohypothalamic tract (RHT) terminating in the supra-chiasmatic nuclei (SCN) has focused attention on the role of these structures in the entrainment and generation of circadian rhythms in mammals. Light effects on circadian rhythms are mediated by both the RHT and portions of the classical visual system. The complex interactions of these systems are reflected both in their direct anatomical connections and in the functional changes in entrainment produced by interruption of either set of projections. Destruction of the RHT/SCN eliminated both normal entrainment and normal free-running circadian rhythms. No circadian rhythms has survived SCN ablation in rodents, but a variety of non-circadian cycles can be generated by lesioned animals. The complex behavioral patterns produced by SCN-lesioned hamsters suggest that circadian oscillators continue to function in these animals, but that their activity is no longer integrated into a single circadian framework. The available evidence indicates that the mammalian pacemaking system comprises a set of independent oscillators normally regulated by the SCN and by light information that is transmitted via several retinofugal pathways.  相似文献   

4.
Serotonin (5-HT) and 5-HT receptor agonists can modify the response of the mammalian suprachiasmatic nucleus (SCN) to light. It remains uncertain which 5-HT receptor subtypes mediate these effects. The effects of 5-HT receptor activation on optic nerve-mediated input to SCN neurons were examined using whole-cell patch-clamp recordings in horizontal slices of ventral hypothalamus from the male mouse. The hypothesis that 5-HT reduces the effect of retinohypothalamic tract (RHT) input to the SCN by acting at 5-HT1B receptors was tested first. As previously described in the hamster, a mixed 5-HT(1A/1B) receptor agonist, 1-[3-(trifluoromethyl)phenyl]-piperazine hydrochloride (TFMPP), reduced the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) evoked by selectively stimulating the optic nerve of wild-type mice. The agonist was negligibly effective in a 5-HT1B receptor knockout mouse, suggesting minimal contribution of 5-HT1A receptors to the TFMPP-induced reduction in the amplitude of the optic nerve-evoked EPSC. We next tested the hypothesis that 5-HT also reduces RHT input to the SCN via activation of 5-HT7 receptors. The mixed 5-HT(1A/7) receptor agonist, R(+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT), reduced the evoked EPSC amplitude in both wild-type and 5-HT1B receptor knockout mice. This effect of 8-OH-DPAT was minimally attenuated by the selective 5-HT1A receptor antagonist WAY 100635 but was reversibly and significantly reduced in the presence of ritanserin, a mixed 5-HT(2/7) receptor antagonist. Taken together with the authors' previous ultrastructural studies of 5-HT1B receptors in the mouse SCN, these results indicate that in the mouse, 5-HT reduces RHT input to the SCN by acting at 5-HT1B receptors located on RHT terminals. Moreover, activation of 5-HT7 receptors in the mouse SCN, but not 5-HT1A receptors, also results in a reduction in the amplitude of the optic nerve-evoked EPSC. The findings indicate that 5-HT may modulate RHT glutamatergic input to the SCN through 2 or more 5-HT receptors. The likely mechanism of altered RHT glutamatergic input to SCN neurons is an alteration of photic effects on the SCN circadian oscillator.  相似文献   

5.
The immunologic and chromatographic behavior of vasopressin-like immunoreactivity (VP-LI) extracted from rat brain tissue has been studied. VP-LI present in acid extracts of hypothalamic, hippocampal, and septal tissue was found to be immunologically identical to synthetic AVP. When extracts of hypothalamic tissue were fractionated using high-performance liquid chromatography, Arg8-vasopressin (AVP) was shown to be the predominant immunoreactive species. In contrast, in addition to AVP, extrahypothalamic brain tissue extracts also contained a small second vasopressin-immunoreactive peak.The effect of water deprivation on brain vasopressin content and chromatographic profile was also studied. This treatment depleted VP-LI content in the posterior pituitary but did not greatly alter that of hypothalamic or extrahypothalamic brain. Microdissection studies showed that VP-LI content was reduced, but only in a restricted number of extrahypothalamic brain nuclei, and that water deprivation failed to alter or increased content in other areas. The results suggest that VP-ergic neurons in the rat brain may be differentially activated.  相似文献   

6.
The retinohypothalamic tract (RHT) is a monosynaptic retinofugal pathway mediating information concerning the light/dark cycle from the retina to the brain's biological clock located in the suprachiasmatic nucleus (SCN). Light information, which daily adjusts (entrains) the rhythms of behaviour and physiology generated by the SCN, is mediated by two neurotransmitters, viz. glutamate and pituitary adenylate cyclase activating polypeptide (PACAP), co-stored in the RHT. Substance P (SP) modulates photic- and glutamate-induced phase shifts but data on its possible presence in the RHT are conflicting. By labelling the RHT projection in the SCN with the anterograde tracer cholera toxin subunit B (ChB) and antibodies against PACAP, we have shown that SP immunoreaction is absent from the PACAP/ChB-labelled nerve fibres in the SCN, indicating that the SP-immunoreactive nerve fibres are not part of the RHT but may originate from SP-immunoreactive cell bodies located within the SCN. In the retina, SP immunoreactivity occurs in amacrine cells in the inner nuclear cell layer, in a few displaced amacrine cells in the ganglion cell layer and in a dense plexus of SP-immunoreactive nerve terminals of the inner plexiform layer. Double immunostaining has revealed that SP-immunoreactive cells and fibres in the retina are not identical with the PACAP-immunoreactive ganglion cells that constitute the RHT. These findings together with the demonstration that bilateral eye enucleation does not decrease the number of SP-immunoreactive nerve fibres in the SCN indicate that SP is not a neurotransmitter in the RHT but could be an intrinsic neurotransmitter of the SCN modulating photic input to the clock.  相似文献   

7.
The cells-of-origin and the mode and site of termination of the interhemispheric connections passing through the anterior and posterior pallial commissures in the telencephalon of two lizards (Podarcis hispanica and Gallotia stehlinii) were investigated by studying the anterograde and retrograde transport of unilaterally injected horseradish peroxidase. The commissural projections arise mainly from pyramidal cells in the medial, dorsomedial, and dorsal cortices (medial subfield). Additionally some non-pyramidal neurons in the medial and dorsal cortices contribute to the commissural system. Medial cortex neurons project to the contralateral anterior septum through the anterior pallial commissure. The dorsomedial cortex projects contralaterally via the anterior pallial commissure to the dorsolateral septum and to the medial, dorsomedial, and dorsal cortices. The projection to the medial cortex terminates in two bands at the inner and outer border, respectively, of the cell layer; the projection to the dorsomedial and dorsal cortex ends in a zone in layer 1 which previously has been described to be Timm-negative, and in a diffuse band in the inner half of layer 3. The medial subfield of the dorsal cortex projects through the anterior pallial commissure to the dorsomedial and dorsal cortices with a similar pattern of termination to that found for the dorsomedial cortex. The posterior pallial commissure contains only the projections from the ventral cortex to its contralateral counterpart and to the ventral part of the caudal medial cortex. The similarities found between this commissural system and the mammalian hippocampal interhemispheric connections are discussed.  相似文献   

8.
Circadian rhythms generated by the hypothalamic suprachiasmatic nucleus (SCN) are synchronized with the external light/dark cycle by photic information transmitted directly from the retina via the retinohypothalamic tract (RHT). The RHT contains the neurotransmitters glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP), which code chemically for 'light' or 'darkness' information, respectively. We investigated interactions of PACAP and glutamate by analysing effects on the second messenger calcium in individual SCN neurons using the Fura-2 technique. PACAP did not affect NMDA-mediated calcium increases, but influenced signalling cascades of non-NMDA glutamate receptors, which in turn can regulate NMDA receptors. On the one hand, PACAP amplified/induced glutamate-dependent calcium increases by interacting with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate signalling. This was not related to direct PACAPergic effects on the second messengers cAMP and calcium. On the other hand, PACAP reduced/inhibited calcium increases elicited by glutamate acting on metabotropic receptors. cAMP analogues mimicked this inhibition. Most neurons displaying PACAPergic neuromodulation were immunoreactive for vasoactive intestinal polypeptide, which is a marker for retinorecipient SCN neurons. The observed PACAPergic effects provide a broad range of interactions that allow a fine-tuning of the endogenous clock by the integration of 'light' and 'darkness' information on the level of single SCN neurons.  相似文献   

9.
Summary A Golgi study of the suprachiasmatic nucleus (SCN) of the chicken and Japanese quail revealed in this area a complex neuronal pattern and typology, including specialized dendritic patterns. Immunocytochemical studies provided evidence for the existence of a vasotocinergic system within the SCN, mainly in its rostral portion. Other clusters of immunoreactive elements are located in the lateral and dorsal divisions of this nucleus; they show a different distribution in the chicken and Japanese quail. The present results confirm, in birds, the existence of a morphologically defined SCN, the complex cytoarchitecture of which suggests specialized functions.This study was supported by grants from CNR (83.00447.04, 84.01769.04 and 84.00797.04) and MPI (60%)  相似文献   

10.
J D Mikkelsen  M M O'Hare 《Peptides》1991,12(1):177-185
The suprachiasmatic nucleus (SCN) regulates a number of circadian rhythms in mammals. A neuropeptide Y (NPY)-containing pathway from the intergeniculate leaflet of the lateral geniculate to the SCN is considered to carry information of the environmental light-dark cycle. Antisera directed against NPY, Cys-NPY(32-36)amide or the C-terminal extended peptide of proNPY(68-97) (CPON) and avidin-biotin immunohistochemistry were used to define the precise distribution of NPYergic nerve fibers in the SCN, and to compare the location of the various fragments of proNPY in these nerves. Gel chromatography and specific radioimmunoassays were applied to quantify the efficiency of the amidation of NPY, and to study the size of peptides demonstrating NPY- and NPYamide-immunoreactivity in anterior hypothalamic extracts. NPY-, NPYamide-, and CPON-immunoreactive nerve fibers exhibited apparently the same distribution and morphology in the SCN. Immunoreactive fibers were preferentially located in the ventral part of the SCN, but along the rostrocaudal axis of the nucleus, the density and the precise distribution of immunoreactive elements changed. From the rostral third of the SCN to the middle third, the number of immunoreactive fibers increased and their distribution extended in a dorsal and lateral direction. In the caudal part of the SCN, the number of immunoreactive elements decreased and the innervation spread to an even more dorsolateral location. Dorsal aspects of the rostral SCN contained a moderate number of fibers, whereas the dorsomedial quadrant of the caudal 2/3 of the SCN was almost devoid of immunoreactivity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Young male golden hamsters, made hyperprolactinemic by a pituitary graft under the kidney capsule, were exposed to a light pulse (1,000 lx/30 min) at Zeitgeber time (ZT) 18. Controls included hamsters receiving a sham graft (muscle). Fos immunoreactive cells were counted in both suprachiasmatic nuclei (SCN) of each animal, using an image analyzer system. The Fos immunoreactivity (Fos-ir) of the ventrolateral and dorsomedial SCN regions was greater in the pituitary-grafted hamsters. Indeed, light induced the greatest response in grafted animals in both SCN regions. However, the SCN of pituitary-grafted hamsters in the absence of light showed the lowest Fos-ir in both regions. The results support the occurrence of a dual effect of hyperprolactinemia on Fos-ir in the SCN of hamsters at ZT 18, with inhibition of Fos expression in the absence of light and potentiation of early gene expression when animals were exposed to a light pulse.  相似文献   

13.
14.
Neurotransmitters of the retino-hypothalamic tract   总被引:7,自引:0,他引:7  
The brain's biological clock, which, in mammals, is located in the suprachiasmatic nucleus (SCN), generates circadian rhythms in behaviour and physiology. These biological rhythms are adjusted daily (entrained) to the environmental light/dark cycle via a monosynaptic retinofugal pathway, the retinohypothalamic tract (RHT). In this review, the anatomical and physiological evidence for glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP) as principal transmitters of the RHT will be considered. A combination of immunohistochemistry at both the light- and electron-microscopic levels and tract-tracing studies have revealed that these two transmitters are co-stored in a subpopulation of retinal ganglion cells projecting to the retino-recipient zone of the ventral SCN. The PACAP/glutamate-containing cells, which constitute the RHT, also contain a recently identified photoreceptor protein, melanopsin, which may function as a "circadian photopigment". In vivo and in vitro studies have shown that glutamate and glutamate agonists such as N-methyl- D-aspartate mimic light-induced phase shifts and that application of glutamate antagonists blocks light-induced phase shifts at subjective night indicating that glutamate mediates light signalling to the clock. PACAP in nanomolar concentrations has similar phase-shifting capacity as light and glutamate, whereas PACAP in micromolar concentrations modulates glutamate-induced phase shifts. Possible targets for PACAP and glutamate are the recently identified clock genes Per1 and Per2, which are induced in the SCN by light, glutamate and PACAP at night.  相似文献   

15.
16.
The hypothalamic suprachiasmatic nucleus (SCN) and the thalamic pregeniculate nucleus (PGN), which appears to include the intergeniculate leaflet (IGL), comprise circadian related centers in the primate brain. In this study, these centers were analysed in respect to their cytoarchitecture, retinal afferents and chemical of major cells and axon terminals with tract tracers and immunohistochemical techniques to define cytoarchitecture and connections, in the common marmoset. The SCN was shown to be a triangularly shaped cluster of compact cells just dorsal to the optic chiasm and lateral to the third ventricle. It is innervated in its ventral portion by terminals from the retina, and NPY-ergic fibers. Serotonergic and SP-staining processes are distributed throughout. VIP-neurons form a dorsolateral group of cells and CB-immunoreactive neurons fill much of the nucleus. The PGN was shown to be a wedge-shaped cluster of cells located dorsomedially to the dorsal lateral geniculate nucleus. It appears to comprise a ventral portion which receives a bilateral retinal projection and contains NPY-neurons, suggesting that this portion may correspond to IGL. The PGN also contains CB-neurons, PV-neurons and fibers, and SP- and 5-HT-fibers. These results in marmoset show that, beside a common plan revealed for most mammals, there are significant interspecific variations in the circadian timing system. Future studies are needed in order to elucidate the circadian organization in this primate species.  相似文献   

17.
The hypothalamic suprachiasmatic nucleus (SCN) and the thalamic pregeniculate nucleus (PGN), which appears to include the intergeniculate leaflet (IGL), comprise circadian related centers in the primate brain. In this study, these centers were analysed in respect to their cytoarchitecture, retinal afferents and chemical of major cells and axon terminals with tract tracers and immunohistochemical techniques to define cytoarchitecture and connections, in the common marmoset. The SCN was shown to be a triangularly shaped cluster of compact cells just dorsal to the optic chiasm and lateral to the third ventricle. It is innervated in its ventral portion by terminals from the retina, and NPY-ergic fibers. Serotonergic and SP-staining processes are distributed throughout. VIP-neurons form a dorsolateral group of cells and CB-immunoreactive neurons fill much of the nucleus. The PGN was shown to be a wedge-shaped cluster of cells located dorsomedially to the dorsal lateral geniculate nucleus. It appears to comprise a ventral portion which receives a bilateral retinal projection and contains NPY-neurons, suggesting that this portion may correspond to IGL. The PGN also contains CB-neurons, PV-neurons and fibers, and SP- and 5-HT-fibers. These results in marmoset show that, beside a common plan revealed for most mammals, there are significant interspecific variations in the circadian timing system. Future studies are needed in order to elucidate the circadian organization in this primate species.  相似文献   

18.
This study is the first to demonstrate organotypic culturing of adult suprachiasmatic nuclei (SCN). This approach was used to obtain organotypic SCN cultures from adult vole brain with a previously determined state of behavioral circadian rhythmicity. We examined vasopressin (AVP) immunoreactivity in these organotypic slice cultures. AVP is one of the major neuropeptides produced by the SCN, the main mammalian circadian pacemaker. AVP immunoreactivity in the SCN of adult common voles in vivo has been shown to correlate with the variability in expression of circadian wheel-running behavior. Here, cultures prepared from circadian rhythmic and nonrhythmic voles were processed immunocytochemically for AVP. Whereas in all cultures AVP could be observed, AVP immunoreactivity differed considerably between vole SCN cultures. SCN cultures from rhythmic voles contained significantly lower numbers of AVP immunoreactive (AVPir) cells per surface area than cultures from nonrhythmic voles. The correlation between timing of behavior and AVP immunoreactivity in vitro is similar to the correlation found earlier in vivo. Apparently, such correlation depends on intrinsic AVP regulation mechanisms of SCN tissue, and not on neural or hormonal input from the environment, as present in intact brain.  相似文献   

19.
This study is the first to demonstrate organotypic culturing of adult suprachiasmatic nuclei (SCN). This approach was used to obtain organotypic SCN cultures from adult vole brain with a previously determined state of behavioral circadian rhythmicity. We examined vasopressin (AVP) immunoreactivity in these organotypic slice cultures. AVP is one of the major neuropeptides produced by the SCN, the main mammalian circadian pacemaker. AVP immunoreactivity in the SCN of adult common voles in vivo has been shown to correlate with the variability in expression of circadian wheel-running behavior. Here, cultures prepared from circadian rhythmic and nonrhythmic voles were processed immunocytochemically for AVP. Whereas in all cultures AVP could be observed, AVP immunoreactivity differed considerably between vole SCN cultures. SCN cultures from rhythmic voles contained significantly lower numbers of AVP immunoreactive (AVPir) cells per surface area than cultures from nonrhythmic voles. The correlation between timing of behavior and AVP immunoreactivity in vitro is similar to the correlation found earlier in vivo. Apparently, such correlation depends on intrinsic AVP regulation mechanisms of SCN tissue, and not on neural or hormonal input from the environment, as present in intact brain.  相似文献   

20.
In this review, we describe six lines of evidence that reveal a modulatory role for serotonin (5-HT) in the regulation of the response of suprachiasmatic nucleus (SCN) neurons to retinal illumination in the Syrian hamster. Electrical stimulation of the median raphe nucleus, sufficient to elicit the release of 5-HT in the SCN, inhibits light-induced phase shifts of the hamster circadian activity rhythm. Two 5-HT receptors capable of mediating the effects of 5-HT on photic responses, the 5-HT7 receptor and the 5-HT1B receptor, are present in the hamster SCN. Light-induced phase shifts are attenuated by systemic and local administration of two 5-HT receptor agonists, 8-OH-DPAT, and TFMPP, and these agents attenuate photic phase shifts by acting on pharmacologically distinct receptors. Furthermore, both compounds also attenuate light-induced Fos expression and photic suppression of pineal melatonin content, indicating that serotonergic modulation of photic signal transduction in the SCN is not limited to the regulation of circadian phase. Finally, both 8-OH-DPAT and TFMPP inhibit RHT neurotransmission in the hypothalamic slice preparation. Further, TFMPP fails to attenuate responses to exogenous glutamate on retinorecipient SCN neurons, consistent with a presynaptic site of action for the drug. Based on these data, we propose that 5-HT modulates RHT neurotransmission in the SCN through at least two distinct mechanisms: (1) via activation of 5-HT7 receptors probably located on retinorecipient neurons; and (2) via activation of presynaptic 5-HT1B receptors leading to reduced release of glutamate from RHT terminals in the SCN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号