首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein we report the synthesis of N-acetyl neuraminic acid derivatives as 4-methylumbelliferyl glycosides and their use in fluorometrically quantifying human and bacterial sialidase activity and substrate specificities. We found that sialidases in the human promyelocytic leukemic cell line HL60 were able to cleave sialic acid substrates with fluorinated C-5 modifications, in some cases to a greater degree than the natural N-acetyl functionality. Human sialidases isoforms were also able to cleave unnatural substrates with bulky and hydrophobic C-5 modifications. In contrast, we found that a bacterial sialidase isolated from Clostridium perfringens to be less tolerant of sialic acid derivatization at this position, with virtually no cleavage of these glycosides observed. From our results, we conclude that human sialidase activity is a significant factor in sialic acid metabolic glycoengineering efforts utilizing unnatural sialic acid derivatives. Our fluorogenic probes have enabled further understanding of the activities and substrate specificities of human sialidases in a cellular context.  相似文献   

2.
Sialidases can be used to transfer sialic acids from sialoglycans to asialoglycoconjugates via the trans-glycosylation reaction mechanism. Some pathogenic bacteria decorate their surfaces with sialic acids which were often scavenged from host sialoglycoconjugates using their surface-localized enzymes. In this study, we constructed an in vitro trans-sialylation system by reconstructing the exogenous sialoglycoconjugate synthesis system of pathogens on the surfaces of yeast cells. The nanH gene encoding an extracellular sialidase of Corynebacterium diphtheriae was cloned into the yeast surface display vector pYD1 based on the Aga1p–Aga2p platform to immobilize the enzyme on the surface of the yeast Saccharomyces cerevisiae. The surface-displayed recombinant NanH protein was expressed as a fully active sialidase and also transferred sialic acids from pNP-α-sialoside, a sialic acid donor substrate, to human-type asialo-N-glycans. Moreover, this system was capable of attaching sialic acids to the glycans of asialofetuin via α(2,3)- or α(2,6)-linkage. The cell surface-expressed C. diphtheriae sialidase showed its potential as a useful whole cell biocatalyst for the transfer of sialic acid as well as the hydrolysis of N-glycans containing α(2,3)- and α(2,6)-linked sialic acids for glycoprotein remodeling.  相似文献   

3.
Aspergillus fumigatus is a filamentous fungus that can cause severe respiratory disease in immunocompromised individuals. A putative sialidase from A. fumigatus was recently cloned and shown to be relatively poor in cleaving N-acetylneuraminic acid (Neu5Ac) in comparison with bacterial sialidases. Here we present the first crystal structure of a fungal sialidase. When the apo structure was compared with bacterial sialidase structures, the active site of the Aspergillus enzyme suggested that Neu5Ac would be a poor substrate because of a smaller pocket that normally accommodates the acetamido group of Neu5Ac in sialidases. A sialic acid with a hydroxyl in place of an acetamido group is 2-keto-3-deoxynononic acid (KDN). We show that KDN is the preferred substrate for the A. fumigatus sialidase and that A. fumigatus can utilize KDN as a sole carbon source. A 1.45-Å resolution crystal structure of the enzyme in complex with KDN reveals KDN in the active site in a boat conformation and nearby a second binding site occupied by KDN in a chair conformation, suggesting that polyKDN may be a natural substrate. The enzyme is not inhibited by the sialidase transition state analog 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Neu5Ac2en) but is inhibited by the related 2,3-didehydro-2,3-dideoxy-d-glycero-d-galacto-nonulosonic acid that we show bound to the enzyme in a 1.84-Å resolution crystal structure. Using a fluorinated KDN substrate, we present a 1.5-Å resolution structure of a covalently bound catalytic intermediate. The A. fumigatus sialidase is therefore a KDNase with a similar catalytic mechanism to Neu5Ac exosialidases, and this study represents the first structure of a KDNase.  相似文献   

4.
Among bacterial, fungal and viral sialidases, the sialidase from Arthrobacter ureafaciens has the unique property of cleaving sialic acids linked to the internal galactose of gangliotetraose. In this study, we examined the ability to cleave the internal sialic acids of GM1 and fucosyl GM1 of sialidases from several bacterial and fungal origins, including Clostridium perfringens and Vibrio cholerae. We found that A. ureafaciens sialidase could liberate the sialic acid of GM1 at the highest rate, and was the only enzyme which could cleave fucosyl GM1 among the sialidases examined.The affinity-purified sialidase derived from the culture medium of A. ureafaciens was comprised of four isoenzymes with different molecular weights and isoelectric points, the isoenzymes that cleaved fucosyl GM1 being L (88 kDa, pI 5.0), M1 (66 kDa, pI 6.2) and M2 (66 kDa, pI 5.5), but not S (52 kDa, pI 6.2) which showed the highest specific activity toward colominic acid among the four isoenzymes. Abbreviations: SA, sialic acid; PBS, phosphate-buffered saline; PVP, polyvinylpyrrolidone; FABMS, fast atom bombardment mass spectrometry; Galint, internal galactose of Gg4Cer; Galext, external galactose of Gg4Cer  相似文献   

5.
Clostridium perfringens causes histotoxic infections and diseases originating in animal or human intestines. A prolific toxin producer, this bacterium also produces numerous enzymes, including sialidases, that may facilitate infection. C. perfringens type D strain CN3718 carries genes encoding three sialidases, including two large secreted sialidases (named NanI and NanJ) and one small sialidase (named NanH) that has an intracellular location in log-phase cultures but is present in supernatants of death phase cultures. Using isogenic mutants of CN3718 that are capable of expressing only NanJ, NanI, or NanH, the current study characterized the properties and activities of each sialidase. The optimal temperature determined for NanJ or NanH enzymatic activity was 37°C or 43°C, respectively, while NanI activity increased until temperature reached 48°C. NanI activity was also the most resistant against higher temperatures. All three sialidases showed optimal activities at pH 5.5. Compared to NanJ or NanH, NanI contributed most to the sialidase activity in CN3718 culture supernatants, regardless of the substrate sialic acid linkage; NanI also released the most sialic acid from Caco-2 cells. Only NanI activity was enhanced by trypsin pretreatment and then only for substrates with an α-2,3- or α-2,6-sialic acid linkage. NanJ and NanI activities were more sensitive than NanH activity to two sialidase inhibitors (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid and siastatin B). The activities of the three sialidases were affected differently by several metal ions. These results indicated that each C. perfringens sialidase has distinct properties, which may allow these enzymes to play different roles depending upon environmental conditions.  相似文献   

6.
The natural sialidase ofClostridium septicum was purified and characterized in parallel with the recombinant enzyme expressed byEscherichia coli. The two enzymes exhibit almost identical properties. The maximum hydrolytic activity was measured at 37 °C in 60mm sodium acetate buffer, pH 5.3. Glycoproteins like fetuin and saponified bovine submandibular gland mucin, most of them having (2-6) linked sialic acids, are preferred substrates, while sialic acids from gangliosides, sialyllactoses, or the (2-8) linked sialic acid polymer (colominic acid) are hydrolysed at lower rates. (2-3) Linkages are more rapidly hydrolysed than (2-6) bonds of sialyllactoses. The cleavage rate is markedly reduced by O-acetylation of the sialic acid moiety. These properties are similar to those of other secreted clostridial sialidases. The enzyme exists in mono-, di- and trimeric forms, the monomer exhibiting a molecular mass of 125 kDa, which is close to the protein mass of 111 kDa deduced from the nucleotide sequence of the cloned gene.Abbreviations BSM bovine submandibular gland mucine - CMM cooked meat medium - EDTA ethylenediaminetetraacetic acid - FPLC fast performance liquid chromatography - LB Luria-Bertani - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - Neu4,5Ac2 N-acetyl-4-O-acetylneuraminic acid - pI isoelectric point - SDS sodium dodecyl sulfate  相似文献   

7.
The inhibitory effect of various compounds on the activities of four types of rat sialidase was investigated. 2-Deoxy-2,3-dehydro-N-acetylneuraminic acid andN-acetylneuraminic acid were competitive inhibitors for the sialidases. The former was effective against cytosolic sialidase and intralysosomal sialidase more than two membrane-associated sialidases I and II, the latter being a much weaker inhibitor. A heavy metal ion such as Cu2+ (1mm) and thiol-modifying 4-hydroxymercuribenzoate (50 µm) caused complete inhibition of the activities of cytosolic sialidase and membrane sialidase I, while no decrease in the activities of intralysosomal sialidase and membrane sialidase II was observed. When 4-nitrophenyloxamic acid and siastatin B, inhibitors of bacterial sialidases, and synthetic thioglycoside GM3 analogue Neu5Ac-s-(2-6)Gal(1-4)Glc(1-1) ceramide, an inhibitor of influenza virus sialidase, were tested, they did not affect any activity of the rat sialidases. By the differential effect of these inhibitors, the four types of rat sialidase could be discriminated from one another and furthermore from viral and bacterial sialidases.Abbreviations Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-dehydro-N-acetylneuraminic acid - 4MU-Neu5Ac 4-methylumbelliferyl--N-acetyl-d-neuraminic acid  相似文献   

8.
A sialidase [EC 3.2.1 18] was isolated and highly purified from the ovary of the starfish, Asterina pectinifera, and its enzymatic properties were compared with those of human placental sialidase. The final preparation gave one broad protein band corresponding to sialidase activity on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 360 000 by HPLC on Sigma Chrome GFC-1300 and Sephadex G-150 column chromatography, and 55 000 by SDS-PAGE, suggesting the presence of a hexamer in the native protein. The optimum pH was between 3.0 and 4.0, and the enzyme liberated sialyl residues from the following compounds: α(2-3) and α(2-6) sialyllactose, colominic acid, fetuin, transferrin, gangliosides GM3, GD1a and GD1b. The enzyme was strongly inhibited by 4-aminophenyl and methyl thio-glycosides of sialic acid, but not by those glycosides of 5-amino sialic acid or sialic acid methyl ester. The enzyme was also highly inhibited by sulfated glucan and glycosaminoglycans. The substrate specificity and the effects of inhibitors on starfish sialidase were very similar to those of human placental sialidase.  相似文献   

9.
Sialidases, or neuraminidases (EC 3.2.1.18), belong to a class of glycosyl hydrolases that release terminal N-acylneuraminate residues from the glycans of glycoproteins, glycolipids, and polysaccharides. In bacteria, sialidases can be used to scavenge sialic acids as a nutrient from various sialylated substrates or to recognize sialic acids exposed on the surface of the host cell. Despite the fact that bacterial sialidases share many structural features, their biochemical properties, especially their linkage and substrate specificities, vary widely. Bacterial sialidases can catalyze the hydrolysis of terminal sialic acids linked by the α(2,3)-, α(2,6)-, or α(2,8)-linkage to a diverse range of substrates. In addition, some of these enzymes can catalyze the transfer of sialic acids from sialoglycans to asialoglycoconjugates via a transglycosylation reaction mechanism. Thus, some bacterial sialidases have been applied to synthesize complex sialyloligosaccharides through chemoenzymatic approaches and to analyze the glycan structure. In this review article, the biochemical features of bacterial sialidases and their potential applications in regioselective hydrolysis reactions as well as sialylation by transglycosylation for the synthesis of sialylated complex glycans are discussed.  相似文献   

10.
When compared to bacterial or viral sialidases, eukaryotic sialidases are expressed at lower levels and frequently show poor specific activities. The identification and characterization of sialidases from eukaryotes have been slowed down due to the limited sensitivity of available sialidase substrates. Therefore, we chemically synthesized a fluorogenic compound, 4-trifluoromethylumbelliferyl-α- -N-acetylneuraminic acid (CF3MU-Neu5Ac), and tested its use as a substrate for eight different sialidases, including enzymes from viral, bacterial, and eukaryotic sources. Kinetic analysis revealed CF3MU-Neu5Ac to be a very sensitive sialidase substrate. Furthermore, this substance proves to be perfectly suitable for thein vivoexamination of sialidases and for the detection of recombinant sialidase by means of expression cloning.  相似文献   

11.
Sialidase (EC 3.2.1.18) catalyzes the release of sialic acid from sialo-oligosaccharides, gangliosides, or sialo-glycoproteins. In this investigation, we cloned a novel cDNA for mouse brain sialidase and expressed the cDNA in COS-7 cells. This 1,699 bp cDNA codes for a 41.6 kDa protein consisting of 372 deduced amino acid residues. In COS-7 cells transiently transfected with the cDNA, a 250-fold increase was observed in specific activity toward 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Similarity searches of the nonredundant GenBank peptide sequence database by the PSI-BLAST program identified rat, hamster, human, and bacterial sialidases homologous to this mouse brain sialidase. Amino acid sequence identities to rat and hamster sialidases (84% and 77%, respectively) suggest that this form of sialidase is conserved in rodents. Sequence identities to human and mouse lysosomal sialidases (30% and 28%, respectively) indicate that the mouse brain sialidase is distinct from the lysosomal enzyme. Mouse brain sialidase has two amino acid sequence motifs common to bacterial sialidases: the 'F/YRIP' motif and the 'Asp-box' motif. The 'F/YRIP' motif is present near the N terminus while two 'Asp-box' motifs are present downstream.  相似文献   

12.
When compared to bacterial or viral sialidases, eukaryotic sialidases are expressed at lower levels and frequently show poor specific activities. The identification and characterization of sialidases from eukaryotes have been slowed down due to the limited sensitivity of available sialidase substrates. Therefore, we chemically synthesized a fluorogenic compound, 4-trifluoromethylumbelliferyl-α-d-N-acetylneuraminic acid (CF3MU-Neu5Ac), and tested its use as a substrate for eight different sialidases, including enzymes from viral, bacterial, and eukaryotic sources. Kinetic analysis revealed CF3MU-Neu5Ac to be a very sensitive sialidase substrate. Furthermore, this substance proves to be perfectly suitable for thein vivoexamination of sialidases and for the detection of recombinant sialidase by means of expression cloning.  相似文献   

13.
Pasteurella multocida is a mucosal pathogen that colonizes the respiratory system of susceptible hosts. Most isolates of P. multocida produce sialidase activity, which may contribute to colonization of the respiratory tract or the production of lesions in an active infection. We have cloned and sequenced a sialidase gene, nanH, from a fowl cholera isolate of P. multocida. Sequence analysis of NanH revealed that it exhibited significant amino acid sequence homology with many microbial sialidases. Insertional inactivation of nanH resulted in a mutant strain that was not deficient in sialidase production. However, this mutant exhibited reduced enzyme activity and growth rate on 2-3' sialyl lactose compared to the wild type. Subsequently, we demonstrated the presence of two sialidases by cloning another sialidase gene that differed from nanH in DNA sequence and substrate specificity. NanB demonstrated activity on both 2-3' and 2-6' sialyl lactose, while NanH demonstrated activity only on 2-3' sialyl lactose. Neither enzyme liberated sialic acid from colominic acid (2-8' sialyl lactose). Recombinant E. coli containing the sialidase genes were able to utilize several sialoconjugants when they were provided as sole carbon sources in minimal medium. These data suggest that sialidases have a nutritional function and may contribute to the ability of P. multocida to colonize and persist on vertebrate mucosal surfaces.  相似文献   

14.
Pseudomonas aeruginosa encodes an enzyme (PA2794) that is annotated as a sialidase (or neuraminidase), as it possesses three bacterial neuraminidase repeats that are a signature of nonviral sialidases. A recent report showed that when the gene encoding this sialidase is knocked out, this led to a reduction in biofilm production in the lungs of mice, and it was suggested that the enzyme recognizes pseudaminic acid, a sialic acid analogue that decorates the flagella of Pseudomonas, Helicobacter, and Campylobacter species. Here, we present the crystal structure of the P. aeruginosa enzyme and show that it adopts a trimeric structure, partly held together by an immunoglobulin-like trimerization domain that is C-terminal to a classical β-propeller sialidase domain. The recombinant enzyme does not show any sialidase activity with the standard fluorogenic sialic-acid-based substrate. The proposed active site contains certain conserved features of a sialidase: a nucleophilic tyrosine with its associated glutamic acid, and two of the usual three arginines that interact with the carboxylic acid group of the substrate, but is missing the first arginine and the aspartic acid that acts as an acid/base in all sialidases studied to date. We show, by in silico docking, that the active site may accommodate pseudaminic acid but not sialic acid and that this is due, in part, to a phenylalanine in the hydrophobic pocket that selects for the alternative stereochemistry of pseudaminic acid at C5 compared to sialic acid. Mutation of this phenylalanine to an alanine converts the enzyme into a sialidase, albeit a poor one, which we confirm by kinetics and NMR, and this allowed us to probe the function of other amino acids. We propose that a histidine plays the role of the acid/base, whose state is altered through a charge-relay system involving a novel His-Tyr-Glu triad. The location of this relay system precludes the presence of one of the three arginines usually found in a sialidase active site.  相似文献   

15.
This review summarizes the recent research development on mammalian sialidase molecular cloning. Sialic acid–containing compounds are involved in several physiological processes, and sialidases, as glycohydrolytic enzymes that remove sialic acid residues, play a pivotal role as well. Sialidases hydrolyze the nonreducing, terminal sialic acid linkage in various natural substrates, such as glycoproteins, glycolipids, gangliosides, and polysaccharides. Mammalian sialidases are present in several tissues/organs and cells with a typical subcellular distribution: they are the lysosomal, the cytosolic, and the plasma membrane–associated sialidases. Starting in 1993, 12 different mammalian sialidases have been cloned and sequenced. A comparison of their amino acid sequences revealed the presence of highly conserved regions. These conserved regions are shared with viral and microbial sialidases that have been characterized at three-dimensional structural level, allowing us to perform the molecular modeling of the mammalian proteins and suggesting a monophyletic origin of the sialidase enzymes. Overall, the availability of the cDNA species encoding mammalian sialidases is an important step leading toward a comprehensive picture of the relationships between the structure and biological function of these enzymes.  相似文献   

16.
Summary An oligonucleotide mixture corresponding to the codons for conserved and repeated amino acid sequences of bacterial sialidases (Roggentin et al. 1989) was used to clone a 4.3 kb PstI restriction fragment of Clostridium septicum DNA in Escherichia coli. The complete nucleotide sequence of the sialidase gene was determined from this fragment. The derived amino acid sequence corresponds to a protein of 110000 Da. The ribosomal binding site and promoter-like consensus sequences were identified upstream from the putative ATG initiation codon. The molecular and immunological properties of the sialidase expressed by E. coli are similar to those of the sialidase as isolated from C. septicum. The newly synthesized protein is assumed to include a leader peptide of 26 amino acids. On sequence alignment, the sialidases from C. septicum, C. sordellii and C. perfringens show significant homologies. As in other bacterial sialidases, conserved amino acid sequences occur at four positions in the protein. Aside from the consensus sequences, only poor homology to other bacterial and viral sialidases was found. The consensus sequence could be identified even in other, non-sialidase proteins, indicating a common function or the evolutionary relatedness of these proteins.  相似文献   

17.
Sialic acid-containing compounds play a key role in the initial steps of the paramyxovirus life cycle. As enveloped viruses, their entry into the host cell consists of two main events: binding to the host cell and membrane fusion. Virus adsorption occurs at the surface of the host cell with the recognition of specific receptor molecules located at the cell membrane by specific viral attachment proteins. The viral attachment protein present in some paramyxoviruses (Respirovirus, Rubulavirus and Avulavirus) is the HN glycoprotein, which binds to cellular sialic acid-containing molecules and exhibits sialidase and fusion promotion activities. Gangliosides of the gangliotetraose series bearing the sialic acid N-acetylneuraminic (Neu5Ac) on the terminal galactose attached in α2-3 linkage, such as GD1a, GT1b, and GQ1b, and neolacto-series gangliosides are the major receptors for Sendai virus. Much less is known about the receptors for other paramyxoviruses than for Sendai virus. Human parainfluenza viruses 1 and 3 preferentially recognize oligosaccharides containing N-acetyllactosaminoglycan branches with terminal Neu5Acα2-3Gal. In the case of Newcastle disease virus, has been reported the absence of a specific pattern of the gangliosides that interact with the virus. Additionally, several works have described the use of sialylated glycoproteins as paramyxovirus receptors. Accordingly, the design of specific sialic acid analogs to inhibit the sialidase and/or receptor binding activity of viral attachment proteins is an important antiviral strategy. In spite of all these data, the exact nature of paramyxovirus receptors, apart from their sialylated nature, and the mechanism(s) of viral attachment to the cell surface are poorly understood. The authors would like to dedicate this review to Prof. José A. Cabezas, recently retired who, as well being our mentor and colleague, introduced us into the fascinating field of sialic acid-containing glycoconjugates and viral sialidases at a time when just a very small number of scientists were paying attention to this important field of research. Also, he has been for us a continuous source of inspiration and friendship to us. The ganglioside nomenclature of Svennerholm [1] is used.  相似文献   

18.
Sialidases are enzymes that influence cellular activity by removing terminal sialic acid from glycolipids and glycoproteins. Four genetically distinct sialidases have been identified in mammalian cells. In this study, we demonstrate that three of these sialidases, lysosomal Neu1 and Neu4 and plasma membrane-associated Neu3, are expressed in human monocytes. When measured using the artificial substrate 2'-(4-methylumbelliferyl)-alpha-d-N-acetylneuraminic acid (4-MU-NANA), sialidase activity of monocytes increased up to 14-fold per milligram of total protein after cells had differentiated into macrophages. In these same cells, the specific activity of other cellular proteins (e.g. beta-galactosidase, cathepsin A and alkaline phosphatase) increased only two- to fourfold during differentiation of monocytes. Sialidase activity measured with 4-MU-NANA resulted from increased expression of Neu1, as removal of Neu1 from the cell lysate by immunoprecipitation eliminated more than 99% of detectable sialidase activity. When exogenous mixed bovine gangliosides were used as substrates, there was a twofold increase in sialidase activity per milligram of total protein in monocyte-derived macrophages in comparison to monocytes. The increased activity measured with mixed gangliosides was not affected by removal of Neu1, suggesting that the expression of a sialidase other than Neu1 was present in macrophages. The amount of Neu1 and Neu3 RNAs detected by real time RT-PCR increased as monocytes differentiated into macrophages, whereas the amount of Neu4 RNA decreased. No RNA encoding the cytosolic sialidase (Neu2) was detected in monocytes or macrophages. Western blot analysis using specific antibodies showed that the amount of Neu1 and Neu3 proteins increased during monocyte differentiation. Thus, the differentiation of monocytes into macrophages is associated with regulation of the expression of at least three distinct cellular sialidases, with specific up-regulation of the enzyme activity of only Neu1.  相似文献   

19.
The expression of sialoglycoconjugates in Fonsecaea pedrosoi conidia, mycelia, and sclerotic cells was analyzed using influenza A and C virus strains, sialidase treatment, and lectin binding. Conidium and mycelium whole cells were recognized by Limax flavus (LFA), Maackia amurensis (MAA), and Sambucus nigra (SNA) lectins, denoting the presence of surface sialoglycoconjugates containing 2,3- and 2,6-sialylgalactosyl sequences. Sialidase-treated conidia reacted more intensively with peanut agglutinin (PNA), confirming the occurrence of sialyl-galactosyl linkages. Conidial cells agglutinated in the presence of influenza A and C virus strains, which confirmed the results obtained from lectin-binding experiments and revealed the presence of sialoglycoconjugates bearing 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) surface structures. Western blotting analysis with peroxidase-labeled LFA demonstrated the occurrence of sialylglycoproteins in protein extracts from conidia and mycelia, with molecular masses corresponding to 56 and 40 kDa. An additional band of 77 kDa was detected in conidial extracts, suggesting an association between sialic acid expression and morphogenesis. Synthesis of sialic acids was correlated with sialidase expression, since both conidial and mycelial morphological stages presented secreted and cell-associated enzyme activity. Sialoglycoconjugates were not detected in F. pedrosoi sclerotic cells from in vitro and in vivo sources, which also do not express sialidase activity. The surface sialyl residues in F. pedrosoi are apparently involved in the fungal interaction with immune effector cells, since sialidase-treated conidia were less resistant to phagocytosis by human neutrophils from healthy individuals. These findings suggest that sialic acid expression in F. pedrosoi varies according to the morphological transition and may protect infecting propagules against immune destruction by host cells.  相似文献   

20.
Cloning of cDNA encoding an α-glucosidase from the dimorphous yeast Saccharomycopsis fibuligera and characterization of the gene product were performed. The cDNA of the putative α-glucosidase gene consists of 2,886 bp, which includes an open reading frame encoding a 19 amino acid signal peptide at the N-terminal end and a 944 amino acid mature protein with a predicted molecular mass of 105.4 kDa and pI value of 4.52. The deduced amino acid sequence shows a high degree of identity (70%) with two yeast glucoamylases, namely, the extracellular glucoamylase Gam from Schwanniomyces occidentalis and the cell surface glucoamylase Gca from Candida albicans. The recombinant product, synthesized in Saccharomyces cerevisiae, is localized on the cell surface and hydrolyses maltooligosaccharides exclusively without the ability to digest soluble starch, which is consistent with the specificity characteristic of α-glucosidase, EC. 3.2.1.20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号