首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sepsis and septic shock lead to considerable morbidity and mortality in developed and developing countries. Despite advances in understanding the innate immune events that lead to septic shock, molecular therapies based on these advances have failed to improve sepsis mortality. The clinical failure of laboratory-derived therapies may be, in part, due to the pleiotropic consequences of the acute inflammatory response, which is the focus of this review. A brisk response to infecting organism is essential for pathogen containment and eradication. However, systemic spread of inflammation beyond a single focus leads to organ injury and higher mortality. The primary goal of this article is to discuss recent animal- and human-based scientific advances in understanding the host response to infection and to highlight how these defense mechanisms can be locally beneficial but systemically detrimental. There are other factors that determine the severity of sepsis that are beyond the scope of this review, including the virulence of the pathogen and regulation by Toll-like receptors. Specifically, this review focuses on how the effector mechanisms of platelets, mast cells, neutrophil extracellular traps (NETs), and the endothelium participate in combating local infections yet can induce organ injury during systemic infection.  相似文献   

2.
The adipose tissue is an active endocrine organ that harbours not only mature and developing adipocytes but also a wide array of immune cells, including macrophages, a key immune cell in determining metabolic functionality. With adipose tissue expansion, M1 pro‐inflammatory macrophage infiltration increases, activates other immune cells, and affects lipid trafficking and metabolism, in part via inhibiting mitochondrial function and increasing reactive oxygen species (ROS). The pro‐inflammatory cytokines produced and released interfere with insulin signalling, while inhibiting M1 macrophage activation improves systemic insulin sensitivity. In healthy adipose tissue, M2 alternative macrophages predominate and associate with enhanced lipid handling and mitochondrial function, anti‐inflammatory cytokine production, and inhibition of ROS. The sequence of events leading to macrophage infiltration and activation in adipose tissue remains incompletely understood but lipid handling of both macrophages and adipocytes appears to play a major role.  相似文献   

3.
Although plasma norepinephrine (NE) increases and hepatocellular function is depressed during early sepsis, it is unknown whether gut is a significant source of NE and, if so, whether gut-derived NE helps produce hepatocellular dysfunction. We subjected rats to sepsis by cecal ligation and puncture (CLP), and 2 h later (i.e., early sepsis) portal and systemic blood samples were collected and plasma levels of NE were assayed. Other rats were enterectomized before CLP. Hepatocellular function was assessed with an in vivo indocyanine green (ICG) clearance technique, systemic levels of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were determined, and the effect of NE on hepatic ICG clearance capacity was assessed in an isolated, perfused liver preparation. Portal levels of NE were significantly higher than systemic levels at 2 h after CLP. Prior enterectomy reduced NE levels in septic animals. Thus gut appears to be the major source of NE release during sepsis. Enterectomy before sepsis also attenuated hepatocellular dysfunction and downregulated TNF-alpha, IL-1beta, and IL-6. Perfusion of the isolated livers with 20 nM NE (similar to that observed in sepsis) significantly reduced ICG clearance capacity. These results suggest that gut-derived NE plays a significant role in hepatocellular dysfunction and upregulating inflammatory cytokines. Modulation of NE release and/or hepatic responsiveness to NE should provide a novel approach for maintaining hepatocellular function in sepsis.  相似文献   

4.
Neurophysiological mechanisms of the reflex lacrimation were analyzed in anesthetized rabbits. The secretory pattern of the lacrimation elicited by stimulation of the cornea consisted of two phases, that is, a rapid flow phase during stimulation and the subsequent slow flow phase in post-stimulus time. Parasympathetic nerve activities are closely related to the secretory volume in the rapid flow phase of the reflex lacrimation. On the other hand, excitation of the sympathetic nerve depressed the secretion in the rapid flow phase, while it facilitated slightly the secretion in the slow flow phase. The postganglionic parasympathetic fibers innervating the lacrimal gland showed two responses, i.e., the early and late discharges, when a single electrical shock was applied to the cornea. Their latencies were 68.7 +/- 8.7 msec and 173.3 +/- 14.2 msec, respectively. The threshold of the late response was about 10 times greater than that of the early one. With moderate anesthesia by pentobarbital or with transection of lateral 1/3 of medulla oblongata at the rostral level of the subnucleus caudalis of the spinal trigeminal nucleus, the late response was abolished whereas the early one was left almost unaffected. It is assumed that the early response is elicited by afferent impulses transmitted via the rostral part of the trigeminal sensory nuclear complex and the late one via the caudal part of the complex and also possibly the reticular formation.  相似文献   

5.
The transient receptor potential vanilloid 1 (TRPV1) is primarily localized to sensory nerve fibers and is associated with the stimulation of pain and inflammation. TRPV1 knockout (TRPV1KO) mice show enhanced LPS-induced sepsis compared with wild type (WT). This implies that TRPV1 may have a key modulatory role in increasing the beneficial and reducing the harmful components in sepsis. We investigated immune and inflammatory mechanisms in a cecal ligation and puncture (CLP) model of sepsis over 24 h. CLP TRPV1KO mice exhibited significant hypothermia, hypotension, and organ dysfunction compared with CLP WT mice. Analysis of the inflammatory responses at the site of initial infection (peritoneal cavity) revealed that CLP TRPV1KO mice exhibited: 1) decreased mononuclear cell integrity associated with apoptosis, 2) decreased macrophage tachykinin NK(1)-dependent phagocytosis, 3) substantially decreased levels of nitrite (indicative of NO) and reactive oxygen species, 4) increased cytokine levels, and 5) decreased bacteria clearance when compared with CLP WT mice. Therefore, TRPV1 deletion is associated with impaired macrophage-associated defense mechanisms. Thus, TRPV1 acts to protect against the damaging impact of sepsis and may influence the transition from local to a systemic inflammatory state.  相似文献   

6.
Haemorrhagic shock results in a severe depression of the cellular and humoral immunity, thus rendering the host increasingly susceptible to sepsis. To study the effect of elevated TNF release following haemorrhagic shock on depressed macrophage and splenocyte functions, C3H/HeN mice were pretreated intraperitoneally with either anti-murine TNF-Ab or saline. Twenty hrs later, mice were bled to and maintained at a mean BP of 35 mmHg for 60 min followed by adequate fluid resuscitation. Pretreatment with anti-TNF-Ab completely neutralized elevated TNF plasma levels following haemorrhage. This was associated with an increased (P < 0.05) capacity of pMø isolated 24 h after haemorrhagic shock to release TNF, while the ability to secrete IL-6 and PGE2 was reduced. Haemorrhagic shock-induced suppression of pMø antigen presentation capacity and MHC class II antigen expression, as well as depression of splenocyte proliferation and lymphokine production was also attenuated (P < 0.05) by anti-TNF-Ab pretreatment. These data indicate that elevated circulating TNF levels play a pivotal role in the depression of essential macrophage and splenocyte functions following haemorrhagic shock.  相似文献   

7.
Acidified feeding formulas have been proposed as a method of controlling gastrointestinal colonization and nosocomial infection in critically ill patients. We examined possible mechanisms by which chronic acid water feeding might protect the host against lethal gut derived sepsis by assessing its effect on both local intestinal epithelial barrier function to bacteria as well as on local and systemic heat shock protein expression. Heat shock protein expression measured by immunoblot demonstrated that HSP25 was increased in the stomach, aorta and kidney of mice chronically fed acid water (8 weeks) compared to tap water fed controls. HSP72 expression was also increased in the aorta of mice drinking acid water. The protein content of cecum and its barrier function were enhanced in mice ingesting acidified water. The direct effect of an acid environment on intestinal epithelial barrier function was tested in cultured human intestinal epithelial cells. An acidified environment protected against bacterial mediated disruption of the intestinal epithelial barrier. Finally, the protective effect of chronic acid water feeding on gut-derived sepsis due to P. aeruginosa was tested in mice. Chronic acid water feeding protected mice from the lethal gut derived sepsis due to P. aeruginosa.  相似文献   

8.
The relationship between human cold-insoluble globulin (CIg, plasma fibronectin) and the human serum opsonic alpha2SB glycoprotein was investigated using immunochemical and biochemical techniques. The two proteins appeared to have identical molecular weights by sodium dodecyl sulfate-polyacrylamide gel electrophoresis on 3.3% gels; have identical migration in the native state on 2.7 to 27% gradient polyacrylamide gels; and have a similar amino acid composition within the accuracy of analysis. Human serum demonstrates antigenic identity when diffused against monospecific antisera to both proteins confirming the presence of common antigenic sites on both molecules. Purified human serum opsonic alpha2SB glycoprotein and purified CIg also demonstrate antigenic identity when diffused against monospecific antiserum to either of the isolated proteins. Antiserum to both proteins also inhibits in vitro hepatic Kupffer cell phagocytic uptake of test particles. These results suggest the idenity of these two proteins and reveal a major physiological function for human plasma CIg. Thus, CIg may be important in the regulation of hepatic reticuloendothelial phagocytic activity and nonspecific systemic host defense. This process of systemic host defense has been shown to be depressed in patients following trauma, major surgery, burn injury, and during neoplastic disease, and, in part, mediated by a deficiency or depletion of the alpha2SB glycoprotein.  相似文献   

9.
PPARs调控巨噬细胞的活化与功能   总被引:1,自引:0,他引:1  
巨噬细胞是先天性防御病原体的关键组分,它参与炎症的发生和消退,同时也参与了组织的修复。巨噬细胞的多种功能通过不同的活化状态完成,即从经典活化状态到替代性活化状态,再到失活状态。巨噬细胞活化的失调与代谢、炎症和免疫病变有关,调节蛋白控制巨噬细胞的活化可作为新的治疗靶点。主要综述过氧化物酶体增殖物激活受体(PPARs)调控巨噬细胞活化的作用。  相似文献   

10.
The role of IFN-gamma in the pathology of experimental endotoxemia   总被引:21,自引:0,他引:21  
Proinflammatory cytokines provoked by circulating bacterial LPS mediate many of the destructive host responses characteristic of septic shock. To determine if the lymphokine IFN-gamma has a similar pathogenic role during endotoxic shock, mice were pretreated with murine rIFN-gamma (rMuIFN-gamma) at various times relative to challenge with Salmonella enteritidis LPS. Subsequent mortality was increased when rMuIFN-gamma was administered before or up to 4 h after endotoxin challenge. Pretreatment with rMuIFN-gamma resulted in nearly fivefold increases in serum TNF during endotoxemia, but TNF levels were unaffected by IFN administered after endotoxin. The increased levels of serum TNF probably reflected enhanced translation of this factor, as tissue expression of TNF mRNA did not increase correspondingly in IFN-pretreated mice. To examine the role of IFN-gamma produced endogenously during endotoxemia, mice were pretreated with 0.5 mg of anti-IFN-gamma mAb before endotoxin injection. This treatment significantly reduced mortality from endotoxic shock but caused only minor decreases in serum TNF. Anti-IFN-gamma administered 2 h after endotoxin was similarly protective. These results demonstrate a significant role for IFN-gamma in the pathology of septic shock, both indirectly as an activator of monokines known to promote lethality and possibly by other, late-acting mechanisms.  相似文献   

11.
The leukocyte integrins have critical roles in host defense and inflammatory tissue injury. We found that integrin alphaDbeta2, a novel but largely uncharacterized member of this family, is restricted to subsets of macrophages and a small population of circulating leukocytes in wild-type mice in the absence of inflammatory challenge and is expressed in regulated fashion during cytokine-induced macrophage differentiation in vitro. alphaDbeta2 is highly displayed on splenic red pulp macrophages and mediates their adhesion to local targets, identifying key functional activity. In response to challenge with Plasmodium berghei, a malarial pathogen that models systemic infection and inflammatory injury, new populations of alphaD+ macrophages evolved in the spleen and liver. Unexpectedly, targeted deletion of alphaD conferred a survival advantage in P. berghei infection over a 30-day observation period. Mechanistic studies demonstrated that the increased survival of alphaD-/- animals at these time points is not attributed to differences in magnitude of anemia or parasitemia or to alterations in splenic microanatomy, each of which is a key variable in the natural history of P. berghei infection, and indicated that an altered pattern of inflammatory cytokines may contribute to the difference in mortality. In contrast to the outcome in malarial challenge, death of alphaD-/- animals was accelerated in a model of Salmonella sepsis, demonstrating differential rather than stereotyped roles for alphaDbeta2 in systemic infection. These studies identify previously unrecognized and unique activities of alphaDbeta2, and macrophages that express it, in host defense and injury.  相似文献   

12.
Inflammation produces marked changes in lipid metabolism, including increased serum fatty acids (FAs) and triglycerides (TGs), increased hepatic TG production and VLDL secretion, increased adipose tissue lipolysis, and decreased FA oxidation in liver and heart. Lipopolysaccharide (LPS) also increases TG and cholesteryl ester levels in kidneys. Here we confirm these findings and define potential mechanisms. LPS decreases renal FA oxidation by 40% and the expression of key proteins required for oxidation of FAs, including FA transport protein-2, fatty acyl-CoA synthase, carnitine palmitoyltransferase-1, medium-chain acyl-CoA dehydrogenase, and acyl-CoA oxidase. Similar decreases were observed in peroxisome proliferator-activated receptor alpha (PPARalpha)-deficient mice. LPS also caused a reduction in renal mRNA levels of PPARalpha (75% decrease), thyroid hormone receptor alpha (TRalpha) (92% decrease), and TRbeta (84% decrease), whereas PPARbeta/delta and gamma were not altered. Expression of PGC1 alpha and beta, coactivators required for PPARs and TR, was also decreased in kidneys of LPS-treated mice, as were mitochondrial genes regulated by PGC1 (Atp5g1, COX5a, Idh3a, and Ndufs8). Decreased renal FA oxidation could be a by-product of the systemic coordinated host response to increase FAs and TGs available for host defense and/or tissue repair. However, the kidney requires energy to support its transport functions, and the inability to generate energy via FA oxidation might contribute to the renal failure seen in severe sepsis.  相似文献   

13.
Macrophages are unique innate immune cells that play an integral role in the defense of the host by virtue of their ability to recognize, engulf, and kill pathogens while sending out danger signals via cytokines to recruit and activate inflammatory cells. It is becoming increasingly clear that purinergic signaling events are essential components of the macrophage response to pathogen challenges and disorders such as sepsis may be, at least in part, regulated by these important sensors. The activation of the P2X7 receptor is a powerful event in the regulation of the caspase-1 inflammasome. We provide evidence that the inflammasome activation requires “priming” of macrophages prior to ATP activation of the P2X7R. Inhibition of the inflammasome activation by the tyrosine kinase inhibitor, AG126, suggests regulation by phosphorylation. Finally, the P2X7R may also be activated by other elements of the host response such as the antimicrobial peptide LL-37, which adds a new, physiologically relevant agonist to the P2X7R pathway. Therapeutic approaches to inflammation and sepsis will certainly be enhanced by an increased understanding of how purinergic receptors modulate the inflammasomes.  相似文献   

14.
Infection of macrophages by the intracellular protozoan Leishmania leads to down-regulation of a number of macrophage innate host defense mechanisms, thereby allowing parasite survival and replication. The underlying molecular mechanisms involved remain largely unknown. In this study, we assessed epigenetic changes in macrophage DNA methylation in response to infection with L. donovani as a possible mechanism for Leishmania driven deactivation of host defense. We quantified and detected genome-wide changes of cytosine methylation status in the macrophage genome resulting from L. donovani infection. A high confidence set of 443 CpG sites was identified with changes in methylation that correlated with live L. donovani infection. These epigenetic changes affected genes that play a critical role in host defense such as the JAK/STAT signaling pathway and the MAPK signaling pathway. These results provide strong support for a new paradigm in host-pathogen responses, where upon infection the pathogen induces epigenetic changes in the host cell genome resulting in downregulation of innate immunity thereby enabling pathogen survival and replication. We therefore propose a model whereby Leishmania induced epigenetic changes result in permanent down regulation of host defense mechanisms to protect intracellular replication and survival of parasitic cells.  相似文献   

15.

Background  

Induced resistance is a state of enhanced defensive capacity developed by a plant reacting to specific biotic or chemical stimuli. Over the years, several forms of induced resistance have been characterized, including systemic acquired resistance, which is induced upon localized infection by an avirulent necrotizing pathogen, and induced systemic resistance (ISR), which is elicited by selected strains of nonpathogenic rhizobacteria. However, contrary to the relative wealth of information on inducible defense responses in dicotyledoneous plants, our understanding of the molecular mechanisms underlying induced resistance phenomena in cereal crops is still in its infancy. Using a combined cytomolecular and pharmacological approach, we analyzed the host defense mechanisms associated with the establishment of ISR in rice by the rhizobacterium Serratia plymuthica IC1270.  相似文献   

16.
Optimal protective effects for defense against infection require orchestration of immune responses spanning multiple host compartments and divergent local regulation at particular sites. During murine cytomegalovirus infections known to target spleen and liver, IL-12-induced IFN-gamma from NK cells is crucial for resistance. However, the roles for IL-18 and/or IL-12 in regulating hepatic IFN-gamma responses, as compared with systemic or splenic responses, have not been defined. In this report, mice genetically deficient in either IL-18 or IL-12p35 exhibited up to 95% reductions in systemic and splenic IFN-gamma responses. Surprisingly, IFN-gamma responses were preserved in the livers of IL-18-deficient, but not IL-12p35-deficient, mice. Cytokine requirements for host survival also differed. Under conditions where mice lacking IL-12p35 exhibited 100% mortality, those lacking IL-18 survived. Taken together, our results delineate contrasting compartmental requirements for IL-18 and suggest that preservation of local, hepatic IFN-gamma production is critical for host defense during murine cytomegalovirus challenge.  相似文献   

17.
The effects of carrageenans (CGNs) on the host defense mechanisms of macrophages against Salmonella infection were examined in vitro by using macrophage-like J774.1 cells. Iota-CGN reduced the Salmonella-binding and phagocytotic activities of J774.1 cells, but it increased the killing activity of the cells. Kappa-CGN increased the binding activity, but reduced the killing ability. CGNs would affect the host defense mechanisms by modulating the macrophage functions.  相似文献   

18.
生防菌诱导植物系统抗性及其生化和细胞学机制   总被引:8,自引:1,他引:8  
生防菌通常可利用竞争、抗生、寄生和交叉保护等直接的拮抗机制抑制植物病害;同时某些生防菌还能促进植物生长,诱导植物对真菌、细菌和病毒引起的病害乃至对线虫和昆虫为害的抗性,称为诱导系统抗性(ISR).ISR具有非特异性、广谱性和系统性,其在表型上与病原菌侵染激发的系统获得抗性(SAR)相似,具有同样的效率;但在寄主植物上不发生过敏性坏死反应(HR),无可见症状,为发展和改善更加安全而环境友好的植物保护策略开辟了新的思路.本文总结了生防真菌和细菌诱导系统抗性及其激发子和信号转导途径等方面的研究进展,重点阐述了寄主防御反应的生化和细胞学机制,并对ISR在植物病害生物防治中的应用前景进行了展望.  相似文献   

19.
IL-8 in septic shock, endotoxemia, and after IL-1 administration   总被引:29,自引:0,他引:29  
Much effort has been directed toward elucidating the host response to sepsis and inflammation, resulting in the definition of a cascade of endogenous mediators that direct metabolic and immunological responses. Here we report that IL-8, a novel cytokine produced by a variety of cells in vitro in response to stimulation with bacterial LPS and the proinflammatory cytokines, appears in the circulation of primates in vivo during septic shock, sublethal endotoxemia, and after the administration of IL-1 alpha. The magnitude of the IL-8 response correlates with the severity of the insult, and levels of IL-8 peak relatively late, after those of TNF-alpha and IL-1 beta, and simultaneously with those of IL-6. IL-8 has been primarily defined as a selective activator and chemoattractant of neutrophils, and we demonstrate that after LPS or IL-1 alpha infusion, circulating neutrophil numbers rapidly recover from an initial neutropenia while IL-8 concentrations are maximal, supporting the hypothesis that IL-8 influences circulating leukocyte populations in vivo. We conclude that IL-8 is another participant in the cytokine cascade elicited by sepsis and inflammation and, as such, may play a significant role in host defense and disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号