首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the Tyrode's perfused rabbit kidney PGI2 (1.3 × 10−8-3.3 × 10−7M) dose-dependently inhibited vasoconstrictor responses to sympathetic nerve stimulation, as did PGE2. The dose-effect curve of the two compounds differed, making PGI2 the less potent in the low concentration and the more potent in the high. PGI2 also inhibited the vasoconstrictor response to exogenous noradrenaline, but it had no effect on transmitter release. The main metabolite of PGI2, 6-keto-PGF, was ineffective both on noradrenaline release and on vascular responses to nerve stimulation or exogenous noradrenaline. It is suggested that PGI2,if a significant renal prostaglandin, may modulate renal neuroeffector transmission post-junctionally, thereby forming a complement to the prejunctional action of PGE2.  相似文献   

2.
Isolated rabbit hearts were infused with 14C-arachidonic acid and subjected to sympathetic nerve stimulation. Prostaglandins in the cardiac effluent were extracted and separated using thin layer chromatography. Other hearts were infused with un-labelled arachidonic acid and the effluent was assayed for neurosecretion inhibitory capacity on the field-stimulated guinea pig vas deferens, and for anti-aggregatory activity on ADP-induced platelet aggregation. PGs in the effluent from hearts infused with un-labelled arachidonic acid were extracted and separated on TLC, and the different fractions were assayed for neurosecretion inhibitory activity.Sympathetic nerve stimulation after preincubation with 14C-AA elicited outflow of four different peaks of 14C-labelled PGs: one chromatographing close to PGF (probably mainly 6-keto-PGF), and three peaks corresponding to PGA2/PGB2, PGD2, and PGE2 respectively. The cardiac interstitial effluent contained anti-aggregatory material which was inactivated by heat treatment, and thus probably identical to PGI2. The cardiac effluent also contained material with neuro-secretion inhibitory activity, which was resistant to heat treatment. Fractional assay of the TLC separated cardiac effluent demonstrated that the neurosecretion inhibitory activity chromatographed with PGE2 only.It has earlier been observed that endogenous PGs inhibit trans-mitter release in sympathetically stimulated organs. On the basis of the current data we suggest that PGE2 is the only physiological inhibitor of sympathetic transmitter release.  相似文献   

3.
Prostaglandin(PG) I2 and its stable metabolite, 6-keto-PGF, were tested on the isolated ductus arteriosus from mature fetal lambs. PGI2 relaxed the ductus in high doses (threshold 10−6M) and its activity disappeared on standing at room temperature for 30 minutes. 6-keto-PGF was inactive at all doses. By contrast, PGE2 produced a dose-dependent relaxation over a range between 10−10 and 10−6 M. These findings confirm that PGE2 is the most potent ductal relaxant among the known derivatives of arachidonic acid. PGE2 probably maintains ductus patency in the fetus and, together with PGE1, remains the compound of choice in the management of newborns requiring a viable ductus for survival.  相似文献   

4.
Prostaglandin E2 (PGE2) has previously been shown to inhibit sympathetic neurotransmission in different organs and species. Based on this inhibitory effect and on its reversal by cyclo-oxygenase inhibitors, PGE2 has been claimed to be a physiological modulator of in vivo release of norepinephrine (NE) from sympathetic nerves. It is now recognized that prostacyclin (PGI2) is the main cyclo-oxygenase product in the heart. We therefore addressed the question whether PGI2, within the same preparation, is formed in increased amounts during sympathetic nerve stimulation and has neuromodulatory activity. The effluent from isolated rabbit hearts subjected to sympathetic nerve stimulation or to infusion of NE or adenosine (ADO) was collected, and its content of PGE2 and 6-keto-PGF1 alpha (dehydration product of PGI2) was analyzed using gas chromatography/mass spectrometry, operated in the negative ion/chemical ionization mode. Other hearts were infused with PGI2 and nerve stimulation induced outflow of endogenous NE into the effluent was analyzed using HPLC with electrochemical detection. Nerve stimulation at 5 or 10 Hz (before but not after adrenergic receptor blockade), as well as infusion of NE (10(-6)-10(-5)M) or ADO (10(-4)M) increased the cardiac outflow of 6-keto-PGF1 alpha. Basal and nerve stimulation induced efflux of 6-keto-PGF1 alpha was approximately 5 times higher than the corresponding efflux of PGE2. PGI2 dose-dependently inhibited the outflow of NE from sympathetically stimulated hearts, the inhibition at 10(-6)M being approximately 40%. On the basis of these observations we propose that PGI2 is a more likely candidate than PGE2 as a potential modulator of neurotransmission in cardiac tissue in vivo.  相似文献   

5.
Sympathetic nerve stimulation of the perfused mesenteric arterial bed of the rabbit, , increase the secretion of prostaglandin (PG)I2 and PGE2. Prazosin (4.8 × 10−6), and α1 adrenergic receptor antagonist, inhibited this inrease in release of PGI2 but not of PGE2 whereas rauwolsin (10−7 M), an α2 adrenergic receptor antagonist, inhibited the increase in release of PGE2 but not of PGI2. Prazosin (10−6 M) completely blocked the vasoconstrictor response to nerve stimulation, and to norepinephrine and phenylephrine administration, suggesting there to be little of an α2 adrenergic receptor component in this response. It is concluded that the increase in PGI2 release follows the activation of α1 adrenergic receptors and is therefore post-junctional in origin, whereas the increase in PGE2 release follows the activation of α2 adrenergic receptors and may be pre- and/or post-junctional in origin.Indomethacin (2.8 × 10−7, 5.6 × 10−7 and 1.12 × 10−6 M did not affect the vasoconstrictor responses to nerve stimulation at 10 Hz, whereas rauwolsin (10−7 M) in the presence of indomethacin substantially increased them. These results indicate that PGE2 does not regulate norepinephrine release following nerve stimulation at 10 Hz to rabbit mesenteric arteries, and that the inhibition of norepinephrine release following stimulation of α2 pre-junctional receptors is independent of PG involvement.  相似文献   

6.
The role of prostacyclin (PGI2) on amphibian adrenal steroidogenesis was studied in perifused interrenal fragments from adult male frogs. Exogenous PGI2 (3×10−8 M to 3×10−5 M) and, in a lesser extent, 6-keto-PGF increased both corticosterone and aldosterone production in a dose-related manner. Short pulses (20 min) of 0.88 μM PGI2 administered at 90 min intervals within the same experiment did not induce any desensitization phenomenon. A prolonged administration (6 h) of PGI2 gave rise to an important increase in steroid production followed by a decline of corticosteroidogenesis. Indomethacin (IDM, 5 μM) induced a marked reduction of the spontaneous secretion of corticosteroid which confirmed the involvement of endogenous PGs in the process of corticosteroid biosynthesis. The IDM-induced blockade of corticosterone and aldosterone secretion was totally reversed by administration of exogenous PGI2 in our model. Angiotensin II (AII) induced a massive release of 6-keto-PGF, the stable metabolite of PGI2. The increase of 6-keto-PGF preceded the stimulation of corticosterone and aldosterone secretions. In contrast, the administration of ACTH did not modify the release of 6-keto-PGF. These results indicate that PGI2 might be an important mediator of adrenal steroidogenesis in frog. They confirm that the corticosteroidogenic actions of ACTH and AII are mediated by different mechanisms.  相似文献   

7.
Prostaglandin synthesis by fetal rat bones was examined by thin-layer chromatography of culture media after preincubation with labeled arachidonic acid. Cultures in rabbit complement (non-heat inactivated serum) were compared with cultures in heat-inactivated serum or cultures treated with indomethacin. The major complement-dependent products were PGE2, PGF and 6-keto-PGF, the metabolite of prostacyclin (PGI2). Since PGI2 had not been previously identified in bone its ability to stimulate bone resorption was tested. Repeated addition of PGI2 stimulated release of previously incorporated 45Ca from fetal rat long bones in both short-term and long-term cultures at concentrations of 10−5 to 10−9M. Because of the short half life of PGI2 in solution at neutral pH, we tested a sulfur analog, thiaprostacyclin (S-PGI2) which was found to be a stimulator of bone resorption at concentrations of 10−5 to 10−6M. These studies suggest that endogenous PGI2 production may play a role in bone metabolism. Since vessels produce PGI2 it is possible that PGI2 release may be responsible for the frequent association between vascular invasion and resorption of bone or calcified cartilage in physiologic remodeling and pathologic osteolysis.  相似文献   

8.
Infusions of prostacyclin (PGI2) (3 × 10−10 − 3 × 10−7M) into the coronary circulation of isolated hearts from guinea pigs or rabbits resulted in a concentration-dependent decrease in the coronary perfusion pressure (CPP). There was a slight decrease in left ventricular systolic pressure in the heart of the rabbit, whereas the heart rate remained unchanged. PGE2 was without effect on the heart of the rabbit but was as potent as PGI2 in decreasing the CPP in the guinea pig heart. 6-oxo-PGF (up to 3 × 10−6 M) did not affect any of the parameters measured.  相似文献   

9.
Prostaglandins (PG)I2, PGE2 and 6-keto PGF1α were infused directly into the gastric arterial supply at 10−9, 10−8 and 10−7 g/kg/min during an intra-gastric artery pentagastrin infusion in anesthetized dogs. 6-keto PGF1α was also infused at 10−6 g/kg/min. Gastric arterial blood flow was measured continuously with a non-cannulating electromagnetic flow probe and gastric acid collected directly from the stomach. PGI2 and PGE2 produced similar dose-dependent increases in blood flow with an increase of more than four-fold at the highest dose. Both PGs inhibited acid output over this dose range with PGE2 having 10 times the potency of PGI2. 6-keto PGF1α was at least 1000 times less active than PGI2 or PGE2 at increasing blood flow and failed to inhibit acid output even at 10−6 g/kg/min.  相似文献   

10.
It has previously been found (1) that feeding rats a diet containing a high amount of sunflowerseed oil results in a higher coronary flow and left ventricular work of their isolated hearts as compared to hearts of rats fed hydrogenated coconut oil or lard. It was hypothesized that this phenomenon can be explained by an influence of dietary linoleic acid on prostaglandin synthesis in the heart. To verify this hypothesis rabbits and rats were fed for four weeks sunflowerseed oil (SSO), hydrogenated coconut oil (HCO) or lard (L) to a maximum of 30 to 40 per cent of the total digestable energy, and the prostaglandin release from the isolated perfused hearts and rat aortas was determined by gas chromatography and bio-assay (PGI2).For the isolated hearts of rabbits fed SSO, the release of PGE2, PGF and 6-oxo-PGF was 1.7, 0.7 and 3.0 ng min−1 g−1 dry weight respectively; when fed L, these values were 2.9, 1.1 and 5.6 ng min−1 g−1. For the isolated hearts of rats fed SSO, HCO or L, the total release of PGE2, PGD2, PGF and thromboxane B2 (TXB2) was 5.9, 5.8 and 5.6 ng min−1 g−1 respectively; the release of 6-oxo-PGF was 3.4, 5.7 and 6.4 ng min−1 g−1 respectively. Relatively, 26% PGE2, 13% PGD2, 8% PGF, 6% TXB2 and 47% 6-oxo-PGF were released. For the isolated aortas of rats fed SSO or HCO, the release of PGI2-like activity was 0.37 ± 0.05 and 0.49 ± 0.05 ng min−1 cm−2. The release of PGI2-like activity from hearts of EFA-deficient rats was about 20% of that from control hearts.We conclude that, although feeding sunflowerseed oil, with respect to feeding hydrogenated coconut oil or lard, does increase coronary flow and left ventricular work, it does not increase the basal prostaglandin production in the isolated rat or rabbit heart; instead there is a tendency for a lower PGI2 synthesis.  相似文献   

11.
Dose-response curves for several prostaglandins (PGI2; PGD2; PGF2 and PGE2); BaCl2 or prostaglandin metabolites (15-keto-PGF; 13, 14-diOH-15-keto-PGF; 6-keto-PGF and 6-keto-PGE1 in quiescent (indomethacin-treated) uterine strips from ovariectomized rats, were constructed. All PGs tested as well as BaCl2, triggered at different concentrations, evident phasic contractions. Within the range of concentrations tested the portion of the curves for the metabolites of PGF was shifted to the right of that for PGF itself; the curve for 6-keto-PGF was displaced to the right of the curve for PGI2 and that for 6-keto-PGE1 to the left.It was also demonstrated that the uterine motility elicited by 10−5 M PGF and its metabolites was long lasting (more than 3 hours) and so it was the activity evoked by PGI2; 6-keto-PGF and BaCl2, but not the contractions following 6-keto-PGE1, which disappeared much earlier. The contractile tension after PGF; 15-keto-PGF; 13, 14-diOH-15-keto-PGF and PGI2, increased as time progressed whilst that evoked by 6-keto-PGF or BaCl2 fluctuated during the same period around more constant levels.The surprising sustained and gradually increasing contractile activity after a single dose of an unstable prostaglandin such as PGI2, on the isolated rat uterus rendered quiescent by indomethacin, is discussed in terms of an effect associated to its transformation into more stable metabolites (6-keto-PGF, or another not tested) or as a consequence of a factor which might protects prostacyclin from inactivation.  相似文献   

12.
Experiments with anesthetized cats were done to study possible roles of different prostaglandins (PGs) in modulating sympathetic neuroeffector transmission. We recorded contractions of the nictitating membrane (n.m.), blood flow in the carotid artery, heart rate and blood pressure, both under control conditions and while stimulating the cut cervical sympathetic nerve. Intra-carotid arterial injection (i.a.) of PGD2 depressed sympathetic transmission to the n.m. without depressing the effects of exogenous norepinephrine (NE). In contrast, PGE2 enhanced the effects of nerve transmission or exogenous NE on the stimulated n.m. PGI2 had similar but shorter effects to PGE2. PGF or a stable PGH2 analog, contracted the n.m. smooth muscle with no detected effect on nerve transmission. Carotid blood flow was increased by PGD2, PGE2 and PGI2. PGD2 and PGI2 caused bradycardia that could be blocked by atropine. This ability of PGD2 to modulate autonomic nerve activity is of particular interest because of recent reports that nerve tissue synthesizes PGD2.  相似文献   

13.
The effect of various factors upon prostaglandin (PG) production by the osteoblast was examined using osteoblast-rich populations of cells prepared from newborn rat calvaria. Bradykinin and serum, and to a lesser extent, thrombin, were also shown to stimulate PGE2 and 6-keto-PGF (the hydration product of PGI2) secretion by the osteoblastic cells. Several inhibitors of prostanoid synthesis, dexamethasone, indomethacin, dazoxiben and nafazatrom, were tested for their effects on the calvarial cells. All inhibited PGE2 and PGI2 (the major arachidonic acid metabolites of these cells) production with half-maximal inhibition by all four substances occuring at approximately 10−7 M. For dazoxiben and nafazatrom, this was in contrast to published results from experiments which have indicated that the compounds stimulated PGI2 production. Finally, since the osteoblasts is responsive to bone-resorbing hormones, these were tested. Only epidermal growth factor (EGF) was shown to modify PG production. At early time EGF stimulated PGE2 release, however, the predominant effect of the growth factor was an inhibition of both PGE2 and PGI2 production by the osteoblastic cells. The present results suggest that the bone-resorbing hormones do not act to cause an increase in PG by the esteoblast and that any increase in PG production by these cells may be in response to vascular agents  相似文献   

14.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF, increased intracellular cAMP concentrations. At maximal concentrations (10−5 tthe effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10−5 PGE2. PGs, when tested at concentrations (e.g. 10−9 ) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmatic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10−5 ), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

15.
Estrogen has been proposed as a negative risk factor for development of peripheral vascular disease yet mechanisms of this protection are not known. This study examines the hypothesis that estrogen stimulates rat aortic endothelial cell (RAEC) release of PGI2. Male Sprague-Dawley rat abdominal aortic 1-mm rings were placed on 35 mm matrigel plates, and incubated for 1 week. The cells were transferred to a Primaria 60-mm dish and maintained from passage 3 in RAEC complete media and experiments performed between passages 4–10. Cells were incubated with Krebs-Henseleit buffer (pH 7.4) containing carrier or increasing concentrations of β-estradiol or testosterone for 60 min. The effluent was analyzed for eicosanoid release of 6-keto-PGF (6-keto, PGI2 metabolite), PGE2 and thromboxane B2 (TXB2) by EIA (hormone stimulated — basal). Cells were analyzed for total protein by the Bradford method and for cyclooxygenase-1 (COX-1) and prostacyclin synthase (PS) content by Western blot analysis and densitometry. Testosterone did not alter RAEC 6-keto-PGF release, whereas estrogen increased RAEC 6-keto-PGF release in a dose-related manner. Estrogen preincubation (10 ng/ml) decreased COX-1 and PS content by 40% suggesting that the estrogen-induced increase in male RAEC PGI2 release was not due to increased synthesis of COX-1 or PS. These data support the hypothesis that estrogen stimulation can increase endogenous male RAEC release of PGI2.  相似文献   

16.
Endothelial cells synthesize and release nitric oxide (NO) and prostacyclin (PGI2) which are involved in the regulation o f vascular tone and blood pressure. Our objective was to evaluate the effects of inhibiting NO synthesis on vascular prostaglandin (PG) and cyclic nucleotide production, as well as the pressor response to norepinephrine (NE). Isolated mesenteric arterial beds were perfused with Krebs-Henseleit solution containing 100 μM NG-monomethyl-L-arginine (L-NMMA), 100 μM L-arginine (LA), or vehicle. After a 30 min equilibration 0.1, 0.5, 1, or 5 μM NE was infused into the superior mesenteric artery and the perfusion pressure was monitored. The basal perfusion pressure did not differ significantly between groups. The pressure-response curve was shifted to the right in the L-NMMA group vs. the LA and control groups. Perfusion was similarly performed with a Krebs-Henseleit solution containing 100 μM L-NMMA, LA, D-arginine, or vehicle. Perfusates were collected before and after NE infusion for the measurement of PGE2, 6-keto-PGF, TxB2, cAMP, and cGMP. In the L-NMMA group the release of PGE2 and 6-keto-PGF1α was decreased, and the release of cGMP was prevented. Production of cAMP did not differ between the four groups before NE infusion, and NE increased cAMP release in the L-NMMA group and controls. The results indicate that inhibition of NO synthesis by L-NMMA enhanced the pressor response to NE, possibly mediated by the decreased cGMP and PGI2 production in resistance vessels.  相似文献   

17.
Prostaglandins (PG) of both the E and F series may serve as modulators of norepinephrine (NE) release from peripheral sympathetic neurons. We have studied the effects of PGE2 and PGF on the accumulation and release of 3H-NE in the CNS using synaptosomes isolated from rat hypothalami.The release of 3H-NE from synaptosomes superfused with Krebs-Ringer bicarbonate buffer was multiphasic with an initial fast release phase followed by a slower release. Raising KC1 concentration of the superfusion medium to 56mM during the slow release phase is known to stimulate 3H-NE release. PGE2 (1 × 10−6M) attenuated 3H-NE release during the fast phase and reduced the amount of 3H-NE released due to KC1 stimulation. At lower concentrations of PGE2 there was no change in the release profile. PGF was without effect on 3H-NE release at all concentrations tested.The accumulation of 3H-NE was significantly diminished by PGE2 at a concentration of 1 × 10−6M, while a lower concentration (1 × 10−7M) was ineffective. PGF had no effect on 3H-NE accumulation at all concentrations investigated.  相似文献   

18.
Prostaglandin I2 potentiated the paw swelling induced by carrageenin in rats. Prostaglandin I2 (0.1 μg) showed similar activity to PGE1 (0.01 μg). This potentiating property disappeared in 60 minutes and was completely abolished by diphenhydramine (25 mg kg−1, i.p.). In vascular permeability tests, PGI2 itself (2.5 × 10−10 mol, 88 ng) caused no dye leakage reaction, but PGE1 (2.5 × 10−10 mol, 88.5 ng) caused a significant dye leakage. This effect of PGE1 was statistically significant compared with vehicle- or PGI2-treated group (p<0.05). Prostaglandin I2 potentiated the increased vascular permeability induced by 5-hydroxytriptamine (2.5 × 10−10 mol), bradykinin (5 × 10−10 mol) and histamine (2 × 10−10 to 2 × 10−8 mol). The potentiation was the most evidence in the case of histamine.  相似文献   

19.
The influence of intra-renal infusions of prostaglandin (PG) I2, PGE2 and PGD2 on renin secretion and renal blood flow was investigated in renally denervated, beta-adrenergic blocked, indomethacin treated dogs with unilateral nephrectomy. All three prostaglandins when infused at doses of 10−8 g/kg/min and 10−7 g/kg/min resulted in marked renal vasodilation. Renin secretory rates increased significantly with both PGI2 and PGE2 at the 10−8 g/kg/min and 10−7 g/kg/min infusion rates in a dose dependent manner. However, PGD2 was inactive. At 10−7 g/kg/min, PGI2 infusions resulted in systemic hypotension indicating recirculation of this prostaglandin. These findings suggest that PGI2 should be included among the cyclooxygenase derived metabolites of arachidonic acid to be considered as possible mediators of renin release.  相似文献   

20.
Prostaglandin E2 (PGE2) and 6 keto-PGF, the stable metabolite of prostacyclin (PGI2), have been measured in the effluent of perfused rat mesenteric arteries by the use of a sensitive and specific radioimmunoadday (RIA) method. The PGE2 and 6-keto-PGF were continuousyl released by the unstimulated mesenteric artery over a period of 145 min. After 100 min of perfusion the release of PGE2 and 6-keto-PGF was 4.5 ± 8.4 pg/min and 254 ± 75 pg.min respectively, which is in accord with the general belief that PGI2 is the major PG synthesized by arterial tissue. Angiotensin II (AII) 5 ng/ml) induced an increased of PGE2 and 6-keto-PGF release without changing the perfusion pressure. The effect of norepinephrine (NE) injections on release of PGs depended on the duration of the stabilization period. The changes of perfusion pressure induced by NE were not related to changes in release of PGs. Thus, it seems that the increase of PG release induced by AII and NE was due to a direct effect of the drugs on the vascular wall. This may represent an important modulating mechanism in the regulation of vascular tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号