首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate whether sublethal heat shock protects Perkinsus marinus (Dermo)-infected oysters Crassostrea virginica from lethal heat stress, and the effects of P. marinus infection on sublethal heat shock response, oysters were first experimentally challenged with P. marinus. Then, when infections in oysters progressed to moderate levels (parasite burden = 10(4) to 10(5) cells g(-1) wet tissue weight), oysters were treated with a sublethal heat shock at 40 degrees C for 1 h (heat shock + Dermo challenge). Other treatment groups included heat-shocked, unchallenged (non-P. marinus challenged) oysters and non-heat-shocked, P. marinus-challenged and -unchallenged oysters. Thermal tolerance was compared among these treatments by administering a lethal heat treatment at 44 degrees C for 1 h, 7 d after sublethal heat shock. Sublethal heat shock enhanced survival to lethal heat treatment in both P. marinus-challenged and -unchallenged oysters. Although levels of hsp70 isoforms (hsp69 and hsp72) did not vary significantly by heat shock or infection with P. marinus, responses due to these treatments were apparent when comparing hsp70 levels within infected and uninfected oysters. Infection enhanced expression of hsp69, regardless of whether oysters were heat shocked or not. In uninfected oysters, hsp72 increased due to heat shock 2 and 7 d post heat shock. Overall, this study demonstrates that heat shock can improve survival in oysters, even in oysters infected with P. marinus. Expression of hsp70 varied among isoforms after sublethal and lethal heat shocks and in infected and uninfected oysters. The heat shock response was not negatively affected by P. marinus infection.  相似文献   

2.
Perkinsus marinus, a protozoan parasite of the Eastern oyster Crassostrea virginica, has severely impacted oyster populations from the Mid-Atlantic region to the Gulf of Mexico coast of North America for more than 30 yr. Although a chemotherapeutic treatment to reduce or eliminate P. marinus from infected oysters would be useful for research and hatchery operations, an effective and practical drug treatment does not currently exist. In this study, the antimicrobial drug triclosan 5-chloro-2-(2,4 dichlorophenoxy) phenol, a specific inhibitor of Fab1 (enoyl-acyl-carrier-protein reductase), an enzyme in the Type II class of fatty acid synthetases, was tested for its effects on viability, proliferation and fatty acid synthesis of in vitro-cultured P. marinus meronts. Treatment of P. marinus meront cell cultures with concentrations of > or = 2 microM triclosan at 28 degrees C (a temperature favorable for parasite proliferation) for up to 6 d stopped proliferation of the parasite. Treatment at > or = 5 microM at 28 degrees C greatly reduced the viability and fatty acid synthesis of meront cells. Oyster hemocytes treated with > or = 20 microM triclosan exhibited no significant (p < 0.05) reduction in viability relative to controls for up to 24 h at 13 degrees C. P. marinus meronts exposed to > or = 2 microM triclosan for 24 h at 13 degrees C exhibited significantly (p < 0.05) lower viability relative to controls. Exposure of P. marinus meronts to triclosan concentrations of > or = 20 microM resulted in > 50% mortality of P. marinus cells after 24 h. These results suggest that triclosan may be effective in treating P. marinus-infected oysters.  相似文献   

3.
The range of water temperatures in which Perkinsus species can survive and proliferate remains ill-defined, particularly at lower temperatures. The in vitro viability, metabolic activity, and proliferation of 3 isolates each of P. marinus and P. olseni trophozoites at 28 degrees C, and at 15 and 4 degrees C, after transfer from 28 degrees C, were compared. Both species showed declines in metabolic activity and proliferation from 28 degrees C to 15 degrees C. At 4 degrees C, both species had viability after 30 days incubation time (P. marinus 49%, P. olseni 58%), but limited metabolic activity and no proliferation. Perkinsus marinus viability was further compared when transferred directly from 28 degrees C, 18 degrees C and progressively from 18 degrees C (0.5 degrees C/day) to 2, 4 and 6 degrees C and maintained for up to 4 months. Viability was highest under progressive transfer (77% and 54% after 30 and 60 days exposure to test temperatures). The decrease in P. marinus viability at the lower temperatures in vitro only partially explains decreasing parasite infection intensities in eastern oysters in the colder months of the year. Moreover, the significant decrease in parasite infection intensities in late winter and early spring, as temperatures increase, is likely due to an active process of elimination by oyster host defences.  相似文献   

4.
In cultured eucaryotic cells, heat treatments specifically induced the rapid synthesis of the so-called heat-shock polypeptides. To ascertain the physiological importance of this phenomenon for highly differentiated organisms, we attempted to determine whether the heat-shock response occurs in a living endothermic organism at extreme temperatures, and if so, whether the response is organ specific. We developed a procedure to label proteins efficiently in 5- to 18-day-old chicken embryos. Heat-shock polypeptides of identical sizes of 85,000, 70,000, and 25,000 daltons were synthesized predominantly in chicken embryo fibroblasts and in many different organs of 18-day-old embryos at 42.5 to 44 degrees C.  相似文献   

5.
Preservation of frozen yeast cells by trehalose.   总被引:9,自引:0,他引:9  
Two different methods commonly used to preserve intact yeast cells-freezing and freeze-drying-were compared. Different yeast cells submitted to these treatments were stored for 28 days and cell viability assessed during this period. Intact yeast cells showed to be less tolerant to freeze-drying than to freezing. The rate of survival for both treatments could be enhanced by exogenous trehalose (10%) added during freezing and freeze-drying treatments or by a combination of two procedures: a pre-exposure of cells to 40 degrees C for 60 min and addition of trehalose. A maximum survival level of 71.5 +/- 6.3% after freezing could be achieved at the end of a storage period of 28 days, whereas only 25.0 +/- 1.4% showed the ability to tolerate freeze-drying treatment, if both low-temperature treatments were preceded by a heat exposure and addition of trehalose to yeast cells. Increased survival ability was also obtained when the pre-exposure treatment of yeast cells was performed at 10 degrees C for 3 h and trehalose was added: these treatments enhanced cell survival following freezing from 20.5 +/- 7. 7% to 60.0 +/- 3.5%. Although both mild cold and heat shock treatments could enhance cell tolerance to low temperature, only the heat treatment was able to increase the accumulation of intracellular trehalose whereas, during cold shock exposure, the intracellular amount of trehalose remained unaltered. Intracellular trehalose levels seemed not to be the only factor contributing to cell tolerance against freezing and freeze-drying treatments; however, the protection that this sugar confers to cells can be exerted only if it is to be found on both sides of the plasma membrane.  相似文献   

6.
We have characterized the heat-shock response of the nosocomial pathogen Enterococcus faecium. The growth of E. faecium cells was analyzed at different temperatures; little growth was observed at 50 degrees C, and no growth at 52 degrees C or 55 degrees C. In agreement, a marked decrease of general protein synthesis was observed at 52 degrees C, and very light synthesis was detected at 55 degrees C. The heat resistance of E. faecium cells was analyzed by measuring the survival at temperatures higher than 52 degrees C and, after 2 h of incubation, viable cells were still observed at 70 degrees C. By Western blot analysis, two heat-induced proteins were identified as GroEL (65 kDa) and DnaK (75 kDa). Only one isoform for either GroEL or DnaK was found. The gene expression of these heat-shock proteins was also analyzed by pulsed-labeled experiments. The heat-induced proteins showed an increased rate of synthesis during the first 5 min, reaching the highest level of induction after 10 min and returning to the steady-state level after 20 min of heat treatment.  相似文献   

7.
R Cavicchioli  K Watson 《FEBS letters》1986,207(1):149-152
Yeast cells when subjected to a primary heat shock, defined as a temperature shift from 23 to 37 degrees C for 30 min, acquired tolerance to heat stress (52 degrees C/5 min). Primary heat shocked cells incubated at 23 degrees C for up to 3 h, progressively lost thermotolerance but retained high levels of the major heat-shock proteins as observed on polyacrylamide gels. On the other hand, a temperature shift back up to 37 degrees C for 30 min fully restored thermotolerance. The major high-molecular-mass heat-shock proteins (hsp) identified were of approximate molecular mass 100 kDa (hsp 100), 80 kDa (hsp 80) and 70 kDa (hsp 70). The results indicate that loss of heat-shock acquisition of thermotolerance is not correlated with loss of heat-shock proteins.  相似文献   

8.
The effects of temperature on the uptake and metabolism of fluorescent labeled palmitic acid (FLC16) and phosphatidylcholine (FLPC) and lipase activities in the oyster protozoan parasite, Perkinsus marinus, meront stage were tested at 10, 18, and 28 degrees C. Temperature significantly affected not only the uptake, assimilation, and metabolism of both FLC16 and FLPC in P. marinus, but also its triacylglycerol (TAG) lipase activities. The incorporation of both FLC16 and FLPC increased with temperature and paralleled the increase in the amount of total fatty acids in P. marinus meront cultures. The incorporation of FLC16 was higher than FLPC at all temperatures. The percentage of FLC16 metabolized to TAG was significantly higher at higher temperatures. Trace amounts of incorporated FLC16 were detected in monoacylglycerol (MAG) and PC at 18 and 28 degrees C. P. marinus meronts metabolized FLPC to TAG, diacylglycerol (DAG), monoacylglycerol (MAG), free fatty acids (FFA), phosphatidylethanolamine (PE), and cardiolipin (CL). The conversion of FLPC to TAG and PE was highest at 28 degrees C. The relative proportions of individual fatty acids and total saturated, monounsaturated and polyunsaturated fatty acids changed with temperatures. While total saturated fatty acids (SAFAs) increased with temperature, total monounsaturated fatty acids (MUFAs) decreased with temperature. Total polyunsaturated fatty acids (PUFAs) increased from 28 to 18 degrees C. The findings of increase of total SAFAs and decrease of total MUFAs with the increase of temperatures and upward shift of total PUFAs from 28 to 18 degrees C suggest that, as in other organisms, P. marinus is capable of adapting to changes in environmental temperatures by modifying its lipid metabolism. Generally, higher lipase activities were noted at higher cultivation temperatures. Both TAG lipase and phospholipase activities were detected in P. marinus cells and their extra cellular products (ECP), but phospholipase activities in both the cell pellets and ECP were very low. Also, lipase activities were much lower in ECP than in the cells. The observations of low metabolism, bioconversion of incorporated fluorescent lipid analogs and lipase activities at low temperatures are consistent with the low in vitro growth rate and low infectivity of P. marinus at low temperatures.  相似文献   

9.
Mammalian cells transformed with either 9,10-dimethyl-1,2-benzanthracene, SV40 or H-ras oncogene dramatically changed their ability to synthesize DNA and RNA and metabolize polyphosphate when L-glutamine was withdrawn from the growth medium or when heat shocked (growth at 42 degrees C). Untransformed, DNA and RNA synthesis decreased by 50-80% when glutamine was withdrawn, but polyphosphate accumulated whether or not glutamine was supplied. Heat shock did not alter this response. Transformed isogenic cells responded differently; at 37 degrees C, they decreased their synthesis of DNA and RNA if starved for glutamine, whereas at 42 degrees C, synthesis was optimal without glutamine. Transformed cells accumulated polyphosphate at 37 degrees C when starved for glutamine, but at 42 degrees C, no polyphosphate accumulated. This apparent non-dependence on glutamine by transformed cells when heat shocked was found to be due to the production of glutamine from serum proteins through induction of a protease(s).  相似文献   

10.
The effect of environmental storage relative humidity (RH) on the moisture content, viability, and moist heat and gaseous ethylene oxide (EO) resistance of biological indicators (BIs) was evaluated. No statistically significant difference was observed between the initial Bacillus stearothermophilus spore population and the spore population of BIs stored at 20 degrees C and 0, 20, 44, of 55% RH or under ambient, 4 degrees C, or -20 degrees C conditions after 12 months. A statistically significant decrease in moist heat resistance from initial starting levels was found for BIs stored at 20 degrees C and either 0 or 20% RH. There was a statistically significant decrease in the B. subtilis BI spore population, compared with initial levels, when the BIs were stored at 20 degrees C and 0% RH concomitant with a significant increase in their EO resistance. BI storage at 20 degrees C and 20 or 44% RH, or under ambient, 4 degrees C, or -20 degrees C conditions, had no significant effect on EO resistance. BIs stored at 20 degrees C and 66% RH demonstrated a significantly lower EO resistance compared with starting levels.  相似文献   

11.
AIMS: The aim of this research was to examine the effect of thermal treatments on the viability and infectivity of Cryptosporidium parvum oocysts attached to a beef surface. METHODS AND RESULTS: This study examined the effects of heat treatment (60 or 75 degrees C) on the viability of C. parvum oocysts inoculated onto the surface of beef muscle estimated by vital dye assay. The infectivity of the oocysts was assessed against monolayers of HCT-8 cells. At 60 degrees C viability of the oocysts decreased from 100% at T0 to 64.2% at T60. At 75 degrees C the viability of the oocysts decreased from 100% at T0 to 53.7% at T15 and finally to 11.2% at T60. Oocysts were rendered noninfective against monolayers of HCT-8 cells following treatments of 60 degrees C/45 s and 75 degrees C/20 s. CONCLUSION: The washing of carcasses with hot water and standard thermal treatments is sufficient to kill C. parvum on beef. SIGNIFICANCE AND IMPACT OF THE STUDY: This study found that relatively mild heat, currently used to decontaminate and heat treat beef carcasses and to cook meat products, is capable of inactivating C. parvum.  相似文献   

12.
To reveal the intracellular localization of Hsp104 in the yeast Saccharomyces cerevisiae before and after heat-shock, we performed immunoelectron microscopy after immunogold labeling with anti-Hsp104 antibody. At normal temperature (25 degrees C), a small amount of Hsp104 was located in the cytoplasm and nucleus. On exposure to mild heat-shock at 40 degrees C, protein aggregates appeared in the cytoplasm and nucleus, and Hsp104 increased around the aggregates with increasing time of the mild heat-shock treatment. Moreover, at lethal heat-shock temperature (51 degrees C) for 20 min after mild heat treatment at 40 degrees C, the intracellular localization of Hsp104 and intracellular structures were similar to those of the mild heat-shocked cells. However, in the lethally heat-shocked cells, certain intracellular structures were destroyed, and Hsp104 was not expressed. In the hsp104 null mutant strain Deltahsp104 which was treated at 40 degrees C, Hsp104 was not localized around the aggregates. Additionally, in the Deltahsp104 strain, even mild heat-shocked cells at 37 degrees C or 40 degrees C, showed destruction of intracellular structure compared to the wild-type strain. Our data suggest the following: (1) Hsp104 is associated closely with protein aggregates during heat-shock treatment, (2) Hsp104 is important for maintenance of the intracellular structure under lethal heat-shock conditions, (3) acquisition of thermotolerance depends on the amount of Hsp104 produced during mild heat-shock treatment.  相似文献   

13.
In S. cerevisiae the induction of heat-shock protein (HSP) synthesis is accompanied by a decrease in the cytoplasmic and vacuolar pH as determined by means of [31P]NMR spectroscopy. The relationship of HSP synthesis and acidification of the cytoplasmic pH is dose-dependent under a variety of treatments (temperature increases (23-32 degrees C), addition of 2,4-dinitrophenol (greater than 1 mM), sodium arsenite (greater than 3.75 X 10(-5) M) or sodium cyanide (greater than 10 mM]. Changes in the intracellular pH occur within 5 min after treatment, attain a maximum within 30 min and are subsequently stable. HSPs 98, 85 and 70 show maximum synthesis rates 1-2 h after a 40 degrees C heat shock. The synthesis rates then decline. HSPs 56, 44 and 33 reveal a smaller and slower increase and almost no decrease in the synthesis rate within 4 h at 40 degrees C. The similar dose dependencies of HSP synthesis and cytoplasmic pH. as well as the immediate response of the pH, can also be demonstrated in the mitochondrial mutant of S. cerevisiae (Q0). This result indicates that the heat-shock response is mainly independent of intact oxidative phosphorylation. No correlation was observed between HSP synthesis rate and total intracellular ATP content.  相似文献   

14.
M-14 human tumor cells have been subjected to two regimens of step-down heating (SDH) consisting of a conditioning treatment at 42 degrees C for 1 h or at 44.5 degrees C for 20 min, immediately followed by heating at 40 degrees C. Both conditioning treatments thermosensitize the cells towards the subsequent heating at 40 degrees C; the thermosensitization ratio is 6.4 for cells conditioned at 42 degrees C for 1 h and 32.3 for cells conditioned at 44.5 degrees C for 20 min. The overall protein synthetic activity is reduced to 32.7% or 18.4% of control values following 1 h at 42 degrees C and 20 min at 44.5 degrees C, respectively; this inhibition is followed by a full recovery of the synthetic activity during the subsequent exposure at 40 degrees C. SDH-treated cells synthetize four heat shock proteins, with approximate molecular weights of 28, 64, 70 and 90 kDa. The pattern of HSPs induction observed in SDH-treated cells is similar to that found in cells subjected to single hyperthermic exposures. Cells subjected to the SDH sequence 42 degrees C/1 h-->40 degrees C/4 h develop thermotolerance, as indicated by a reduced sensitivity to further hyperthermic challenges.  相似文献   

15.
Different strains of Thiobacillus ferrooxidans were examined for their ability to produce a heat shock and a cold shock response. Strain A1, heat shocked from 20° to 35°C, acquired thermotolerance, as it showed a 1000-fold reduction in cell mortality when exposed to the supermaximum temperature of 42°C, as compared to a non-heat-shocked control. A heat shock from 25° to 35°C yielded similar results, although a higher degree of thermotolerance was achieved for the shorter exposure times. Cultures heat shocked for 5 h showed a five-log reduction in viable counts after 41 h at 42°C, whereas non-heat-shocked cultures showed a similar reduction in viability in 28 h. Conferred thermotolerance was immediate and sustained for the duration of the exposure to 42°C. Heat-shocked cultures were not significantly protected against loss of viability due to freezing (-15°C for 24 h). Strain S2, cold shocked from 25° to 10°C, and strain D6, cold shocked from 25° to 5°C, were not protected against freezing at-15°C. An analysis of proteins extracted from heat-shocked cells of strain A1 showed the presence of at least one newly induced protein and eight hyper-induced proteins. The molecular weights of the heat shock proteins were in the range of 15–80.3 kDa.  相似文献   

16.
An adenyl cyclase deletion mutant (cya) of E. coli failed to exhibit a heat-shock response even after 30 min at 42 degrees C. Under these conditions, heat-shock protein synthesis was induced by 10 min in the wild-type strain. These results suggest that synthesis of heat-shock proteins in E. coli requires the cya gene. This hypothesis is supported by the finding that a presumptive cyclic AMP receptor protein (CRP) binding site exists within the promoter region of the E. coli htpR gene. In spite of the absence of heat-shock protein synthesis, when treated at 50 degrees C, the cya mutant is relatively more heat resistant than wild type. Furthermore, when heat shocked at 42 degrees C prior to exposure at 50 degrees C, the cya mutant developed thermotolerance. These results suggest that heat-shock protein synthesis is not essential for development of thermotolerance in E. coli.  相似文献   

17.
Nil and Nilpy hamster cells exposed to temperatures of 44 degrees C to induce the heat-shock proteins survive such exposure for 2 h or more when incubated in Eagle's Minimum Essential Medium with 10% undialyzed fetal calf serum. If D-glucose and L-glutamine are withdrawn from the medium during heat treatment, nearly all the cells are killed by as little as 20 min at 44 degrees C. Several alpha-keto acids, pyruvate, alpha-ketobutyrate, oxaloacetate, and alpha-ketoglutarate, protect cells from the lethal action of the heat treatment in the absence of D-glucose and L-glutamine. L-Glucose and D-glutamine are without effect. Efforts to reverse lethal effects have not been successful.  相似文献   

18.
Using mRNA isolated from Neurospora crassa mycelium, grown for 14 h at normal growth temperature of 28 degrees C, and heat shocked for 1 h at 48 degrees C, a cDNA library was prepared in the expression vector lambda gt11. Following immunoscreening of this library with a polyclonal antiserum raised against a 80-kilodalton heat-shock protein (HSP80), cDNA clones containing 1.1- and 1.4-kilobase inserts were selected. Analysis of the partial nucleotide sequence and the deduced amino acid sequence of the cDNA clones revealed a remarkable extent of homology with other eukaryotic stress-90 family proteins; 85% identity of the amino acid sequence with that of yeast HSP90(82) was seen. The C-terminal end of the sequence contained the MEEVD motif, characteristic of eukaryotic stress proteins with a predominantly cytosolic localization. The gene for N. crassa HSP80 was mapped to the right arm of linkage group V, using restriction fragment length polymorphism mapping. Its expression during heat shock and recovery was monitored by probing Northern blots of RNA isolated from mycelium grown under various stress conditions.  相似文献   

19.
Lack of heat-shock response in preovulatory mouse oocytes   总被引:5,自引:0,他引:5  
The response to heat (hs response) of preovulatory mouse oocytes was compared with that of mouse granulosa cells and characterized in regard to in vitro resumption of meiosis, amino acid incorporation into total protein, and qualitative analysis of protein synthesized before and after the shock. Granulosa cells displayed a hs response typical of other mammalian systems. When incubated at 43 degrees C for 20-40 min, these cells maintained a normal level of amino acid incorporation into total protein, responded to stress by new synthesis of 33- and 68-kDa heat-shock proteins (hsps), and enhanced synthesis of 70-kDa heat-shock cognate protein (hsc70) and of 89- and 110-kDa hsps. In contrast to granulosa cells, preovulatory mouse oocytes were very sensitive to hyperthermia. Incubation at 43 degrees C for 20-40 min strongly inhibited oocyte resumption of meiosis and protein synthesis and did not induce a new or enhanced synthesis of hsps. Unstressed preovulatory mouse oocytes constitutively synthesized 70- and 89-kDa polypeptides resembling hsc70 and hsp89 of granulosa cells.  相似文献   

20.
Chilling at 2.5°C reduced the subsequent growth of cucumber ( Cucumis sativus L.) radicles at 25°C. The reduction in radicle growth was linear for 1–3 days of chilling at ≈10% per day of treatment, but then it increased in a non-linear pattern until subsequent radicle growth was all but eliminated by 6 days of chilling. A heat shock of 40°C for 4–12 min increased chilling tolerance such that 4 days of chilling caused only a 36% decrease in radicle growth, compared to 66% for seedlings not heat shocked. Heat shocks were only able to protect that part of radicle growth that was in excess of the linear decrease in radicle growth projected from 0–3 days. There appear to be two effects of chilling on radicle growth. The first inhibition of subsequent growth was linear and was not affected by heat shocks. The second inhibition was much more severe; it appeared after 3 days of chilling and could be prevented by heat shock. Seeds classified with different levels of vigor (i.e., different initial rates of growth) did not respond significantly different to chilling stresses following heat-shock treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号