首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein kinase C (PKC) and angiotensin II (AngII) can regulate cardiac function in pathological conditions such as in diabetes or ischemic heart disease. We have reported that expression of connective tissue growth factor (CTGF) is increased in the myocardium of diabetic mice. Now we showed that the increase in CTGF expression in cardiac tissues of streptozotocin-induced diabetic rats was reversed by captopril and islet cell transplantation. Infusion of AngII in rats increased CTGF mRNA expression by 15-fold, which was completely inhibited by co-infusion with AT1 receptor antagonist, candesartan. Similarly, incubation of cultured cardiomyocytes with AngII increased CTGF mRNA expression by 2-fold, which was blocked by candesartan and a general PKC inhibitor, GF109203X. The role of PKC isoform-dependent action was further studied using adenoviral vector-mediated gene transfer of dominant negative (dn) PKC or wild type PKC isoforms. Expression of dnPKCalpha, -epsilon, and -zeta isoforms suppressed AngII-induced CTGF expression in cardiomyocytes. In contrast, expression of dominant negative PKCdelta significantly increased AngII-induced CTGF expression, whereas expression of wild type PKCdelta inhibited this induction. This inhibitory effect was further confirmed in the myocardium of transgenic mice with cardiomyocyte-specific overexpression of PKCdelta (deltaTg mice). Thus, AngII can regulate CTGF expression in cardiomyocytes through a PKC activation-mediated pathway in an isoform-selective manner both in physiological and diabetic states and may contribute to the development of cardiac fibrosis in diabetic cardiomyopathy.  相似文献   

3.
We reported previously an important role of cyclic AMP-response element (CRE) for the induction of interleukin-6 gene expression by angiotensin II (AngII). We examined signaling pathways that are responsible for AngII-induced phosphorylation of CRE-binding protein (CREB) at serine 133 that is a critical marker for the activation in rat vascular smooth muscle cells (VSMC). AngII time dependently induced phosphorylation of CREB with a peak at 5 min. The AngII-induced phosphorylation of CREB was blocked by CV11974, an AngII type I receptor antagonist, suggesting that AngII type I receptor may mediate the phosphorylation of CREB. Inhibition of extracellular signal-regulated protein kinase (ERK) by PD98059 or inhibition of p38 mitogen-activated protein kinase (MAPK) by SB203580 partially inhibited AngII-induced CREB phosphorylation. A protein kinase A inhibitor, H89, also partially suppressed AngII-induced CREB phosphorylation. Inhibition of epidermal growth factor-receptor by AG1478 suppressed the AngII-induced CREB phosphorylation as well as activation of ERK and p38MAPK. Overexpression of the dominant negative form of CREB by an adenovirus vector suppressed AngII-induced c-fos expression and incorporation of [(3)H]leucine to VSMC. These findings suggest that AngII may activate multiple signaling pathways involving two MAPK pathways and protein kinase A, all of which contribute to the activation of CREB. Transactivation of epidermal growth factor-receptor is also critical for AngII-induced CREB phosphorylation. Activation of CREB may be important for the regulation of gene expression and hypertrophy of VSMC induced by AngII.  相似文献   

4.
AngiotensinII (AngII) induces vascular smooth muscle cell (VSMC) proliferation, which plays an important role in the development and progression of hypertension. AngII-induced cellular events have been implicated, in part, in the activation of protein kinase C (PKC) and extracellular signal-regulated kinases 1/2 (ERK1/2). In the present study, we investigated the effect of Ib, a novel nonpeptide AngII receptor type 1 (AT1) antagonist, on the activation of PKC and ERK1/2 in VSMC proliferation induced by AngII. MTT, and [3H]thymidine incorporation assay showed that AngII-induced VSMC proliferation was inhibited significantly by Ib. The specific binding of [125I]AngII to AT1 receptors was blocked by Ib in a concentration-dependent manner with IC50 value of 0.96 nM. PKC activity assay and Western blot analysis demonstrated that Ib significantly inhibited the activation of PKC and phosphorylation of ERK1/2 induced by AngII, respectively. Furthermore, AngII-induced ERK1/2 activation was obviously blocked by GF109203X, a PKC inhibitor. These findings suggest that the suppression of Ib on AngII-induced VSMC proliferation may be attributed to its inhibitory effect on PKC-dependent ERK1/2 pathway.  相似文献   

5.
6.
7.
A G protein-coupled receptor agonist, angiotensin II (AngII), induces epidermal growth factor (EGF) receptor (EGFR) transactivation possibly through metalloprotease-dependent, heparin-binding EGF (HB-EGF) shedding. Here, we have investigated signal transduction of this process by using COS7 cells expressing an AngII receptor, AT1. In these cells AngII-induced EGFR transactivation was completely inhibited by pretreatment with a selective HB-EGF inhibitor, or with a metalloprotease inhibitor. We also developed a COS7 cell line permanently expressing a HB-EGF construct tagged with alkaline phosphatase, which enabled us to measure HB-EGF shedding quantitatively. In the COS7 cell line AngII stimulated release of HB-EGF. This effect was mimicked by treatment either with a phospholipase C activator, a Ca2+ ionophore, a metalloprotease activator, or H2O2. Conversely, pretreatment with an intracellular Ca2+ antagonist or an antioxidant blocked AngII-induced HB-EGF shedding. Moreover, infection of an adenovirus encoding an inhibitor of G(q) markedly reduced EGFR transactivation and HB-EGF shedding through AT1. In this regard, AngII-stimulated HB-EGF shedding was abolished in an AT1 mutant that lacks G(q) protein coupling. However, in cells expressing AT1 mutants that retain G(q) protein coupling, AngII is still able to induce HB-EGF shedding. Finally, the AngII-induced EGFR transactivation was attenuated in COS7 cells overexpressing a catalytically inactive mutant of ADAM17. From these data we conclude that AngII stimulates a metalloprotease ADAM17-dependent HB-EGF shedding through AT1/G(q)/phospholipase C-mediated elevation of intracellular Ca2+ and reactive oxygen species production, representing a key mechanism indispensable for EGFR transactivation.  相似文献   

8.
OBJECTIVE: Angiotensin converting enzyme (ACE) inhibitors significantly improve survival in patients with atherosclerosis. Although ACE inhibitors reduce local angiotensin II (AngII) formation, serine proteases form AngII to an enormous amount independently from ACE. Therefore, our study concentrates on the effect of the ACE-inhibitor ramiprilat on chemokine release, AngII receptor (ATR) expression, and NF-kappaB activity in monocytes stimulated with AngII. METHODS AND RESULTS: AngII-induced upregulation of IL-8 and MCP-1 protein and RNA in monocytes was inhibited by the AT1R-blocker losartan, but not by the AT2R-blocker PD 123.319. Ramiprilat dose-dependently suppressed AngII-induced upregulation of IL-8 and MCP-1. The suppressive effect of ramiprilat on AngII-induced chemokine production and release was in part caused by downregulation of NF-kappaB, but more by a selective and highly significant reduced expression of AT1 receptors as shown in monocytes and endothelial cells. CONCLUSION: In our study we demonstrated for the first time that ramiprilat reduced expression of AT1R in monocytes and endothelial cells. In addition, ramiprilat downregulated NF-kappaB activity and thereby reduced the AngII-induced release of IL-8 and MCP-1 in monocytes. This antiinflammatory effect, at least in part, may contribute to the clinical benefit of the ACE inhibitor in the treatment of coronary artery disease.  相似文献   

9.
Recent studies have described that the Notch signaling pathway is activated in a wide range of renal diseases. Angiotensin II (AngII) plays a key role in the progression of kidney diseases. AngII contributes to renal fibrosis by upregulation of profibrotic factors, induction of epithelial mesenchymal transition and accumulation of extracellular matrix proteins. In cultured human tubular epithelial cells the Notch activation by transforming growth factor-β1 (TGF-β1) has been involved in epithelial mesenchymal transition. AngII mimics many profibrotic actions of TGF-β1. For these reasons, our aim was to investigate whether AngII could regulate the Notch/Jagged system in the kidney, and its potential role in AngII-induced responses. In cultured human tubular epithelial cells, TGF-β1, but not AngII, increased the Notch pathway-related gene expression, Jagged-1 synthesis, and caused nuclear translocation of the activated Notch. In podocytes and renal fibroblasts, AngII did not modulate the Notch pathway. In tubular epithelial cells, pharmacological Notch inhibition did not modify AngII-induced changes in epithelial mesenchymal markers, profibrotic factors and extracellular matrix proteins. Systemic infusion of AngII into rats for 2 weeks caused tubulointerstitial fibrosis, but did not upregulate renal expression of activated Notch-1 or Jagged-1, as observed in spontaneously hypertensive rats. Moreover, the Notch/Jagged system was not modulated by AngII type I receptor blockade in the model of unilateral ureteral obstruction in mice. These data clearly indicate that AngII does not regulate the Notch/Jagged signaling system in the kidney, in vivo and in vitro. Our findings showing that the Notch pathway is not involved in AngII-induced fibrosis could provide important information to understand the complex role of Notch system in the regulation of renal regeneration vs damage progression.  相似文献   

10.
Guo RW  Yang LX  Wang H  Liu B  Wang L 《Regulatory peptides》2008,147(1-3):37-44
Angiotensin II (AngII) is widely recognized as a critical regulator of the development of atherosclerosis. Matrix metalloproteinases (MMPs) are thought to participate in plaque destabilization through degradation of the extracellular matrix. In the present study, we investigated the potential mechanism of AngII-induced MMP-9 expression in vascular smooth muscle cells (VSMC). AngII upregulated the expression of MMP-9 significantly in VSMC obtained from rat aorta. RNAi-mediated knockdown of p65 and losartan, an inhibitor of AngII receptors subtype-1 (AT1), could abolish AngII-induced MMP-9 expression. In addition, AngII induced the NF-κB binding activity via AT1 and AT2 receptors in VSMC, and AngII-induced activation of NF-κB is not associated with significant downregulation of IκB. In summary, this study demonstrates that AngII stimulates NF-κB nuclear translocation in VSMC via AT1 and AT2. AngII increases the expression of MMP-9 in VSMC, and AT1 and NF-κB pathways have an important role in this response.  相似文献   

11.
Base-line urinary potassium secretion in the distal nephron is mediated by small conductance rat outer medullary K (ROMK)-like channels. We used the patch clamp technique applied to split-open cortical collecting ducts (CCDs) isolated from rats fed a normal potassium (NK) or low potassium (LK) diet to test the hypothesis that AngII directly inhibits ROMK channel activity. We found that AngII inhibited ROMK channel activity in LK but not NK rats in a dose-dependent manner. The AngII-induced reduction in channel activity was mediated by AT1 receptor (AT1R) binding, because pretreatment of CCDs with losartan but not PD123319 AT1 and AT2 receptor antagonists, respectively, blocked the response. Pretreatment of CCDs with U73122 and calphostin C, inhibitors of phospholipase C (PLC) and protein kinase C (PKC), respectively, abolished the AngII-induced decrease in ROMK channel activity, confirming a role of the PLC-PKC pathway in this response. Studies by others suggest that AngII stimulates an Src family protein-tyrosine kinase (PTK) via PKC-NADPH oxidase. PTK has been shown to regulate the ROMK channel. Inhibition of NADPH oxidase with diphenyliodonium abolished the inhibitory effect of AngII or the PKC activator phorbol 12-myristate 13-acetate on ROMK channels. Suppression of PTK by herbimycin A significantly attenuated the inhibitory effect of AngII on ROMK channel activity. We conclude that AngII inhibits ROMK channel activity through PKC-, NADPH oxidase-, and PTK-dependent pathways under conditions of dietary potassium restriction.  相似文献   

12.
13.
A temporal increase in temperature triggers a series of stress responses and alters vascular smooth muscle (VSM) contraction induced by agonist stimulation. Here we examined the role of reactive oxygen species (ROS) in heat shock-dependent augmentation of angiotensin II (AngII)-induced VSM contraction. Endothelium-denuded rat aortic rings were treated with heat shock for 45 min at 42 °C and then subjected to assays for the production of force, ROS, and the expression of ROS-related enzymes. AngII-induced contraction was enhanced in heat shock-treated aorta. AngII-induced production of hydrogen peroxide and superoxide were elevated in response to the heat shock treatment. Pre-treatment with superoxide dismutases (SOD) mimetic and inhibitors for glutathione peroxidase and NADPH oxidase but not for xanthine oxidase eliminated an increase in the AngII-induced contraction in the heat shock-treated aorta. Heat shock increased the expression of p47phox, a cytosolic subunit of NADPH oxidase, but not Cu-Zn-SOD and Mn-SOD. In addition, heat shock increased contraction that was evoked by hydrogen peroxide and pyrogallol. These results suggest that heat shock causes an elevation of ROS as well as a sensitization of ROS signal resulting in an augmentation of VSM contraction in response to agonist.  相似文献   

14.
Through diametric actions, the transforming growth factor β (TGFβ) and Angiotensin II (AngII) play important roles in regulating various biological responses such as cell proliferation and migration. Signaling initiated by TGFβ and AngII occurs through two structurally and functionally distinct receptor super families, the serine/threonine kinase and G protein-coupled receptors (GPCRs). Previously, we identified the G protein-coupled receptor kinase-2 (GRK2), a key regulatory factor in the desensitization of GPCRs, as a direct downstream target of the TGFβ signaling cascade. GRK2 acts through a negative feed-back loop mechanism to terminate TGFβ-induced smad signaling. To investigate the impact of TGFβ-induced GRK2 expression on GPCR signaling, we examined its effect on AngII signaling in vascular smooth muscle cells (VSMCs). In this study, we show that activation of the TGFβ signaling cascade in VSMCs results in increased GRK2 expression levels, which consequently inhibits AngII-induced ERK phosphorylation and antagonizes AngII-induced VSMC proliferation and migration. Moreover, the inhibitory effect of TGFβ on AngII signaling occurs at the Mek-Erk interface and is abrogated when an anti-sense oligonucleotide directed against GRK2 is used. Thus, we conclude that TGFβ signaling antagonizes AngII-induced VSMC proliferation and migration through the inhibition of ERK phosphorylation and that GRK2 is a key factor mediating the cross-talk between these two receptor super families.  相似文献   

15.
Cerebrovascular smooth muscle cell proliferation and migration contribute to hyperplasia in case of cerebrovascular remodeling and stroke. In the present study, we investigated the effects of acetylshikonin, the main ingredient of a Chinese traditional medicine Zicao, on human brain vascular smooth muscle cell (HBVSMCs) proliferation and migration induced by angiotensin II (AngII), and the underlying mechanisms. We found that acetylshikonin treatment significantly inhibited AngII-induced HBVSMCs proliferation and cell cycle transition from G1 to S phase. Wound-healing assay and Transwell assay showed that AngII-induced cell migration and invasion were markedly attenuated by acetylshikonin. In addition, AngII challenge significantly induced Wnt/β-catenin signaling activation, as evidenced by increased β-catenin phosphorylation and nuclear translocation and GSK-3β phosphorylation. However, acetylshikonin treatment inhibited the activation of Wnt/β-catenin signaling. Consequently, western blotting analysis revealed that acetylshikonin effectively reduced the expression of downstream target genes in AngII-treated cells, including c-myc, survivin and cyclin D1, which contributed to the inhibitory effect of acetylshikonin on HBVSMCs proliferation. Further, stimulation with recombinant Wnt3a dramatically reversed acetylshikonin-mediated inhibition of proliferation and cell cycle transition in HBVSMCs. Our study demonstrates that acetylshikonin prevents AngII-induced cerebrovascular smooth muscle cells proliferation and migration through inhibition of Wnt/β-catenin pathway, indicating that acetylshikonin may present a potential option for the treatment of cerebrovascular remodeling.  相似文献   

16.
Previous studies have demonstrated that molecules of the Ras signaling pathway are present in intracellular compartments, including early endosomes, the endoplasmic reticulum (ER), and the Golgi, and suggested that mitogens can regulate Ras activity in these endomembranes. In this study, we investigated the effect of angiotensin II (AngII) on intracellular Ras activity in living HEK293 cells expressing angiotensin type 1 receptors (AT(1)-Rs) using newly developed bioluminescence resonance energy transfer biosensors. To investigate the subcellular localization of AngII-induced Ras activation, we targeted our probes to various intracellular compartments, such as the trans-Golgi network (TGN), the ER, and early endosomes. Using these biosensors, we detected AngII-induced Ras activation in the TGN and ER, but not in early endosomes. In cells expressing a cytoplasmic tail deletion AT(1)-R mutant, the AngII-induced response was enhanced, suggesting that receptor internalization and β-arrestin binding are not required for AngII-induced Ras activation in endomembranes. Although we were able to demonstrate EGF-induced Ras activation in the plasma membrane and TGN, but not in other endomembranes, AG1478, an EGF receptor inhibitor, did not affect the AngII-induced response, suggesting that the latter is independent of EGF receptor transactivation. AngII was unable to stimulate Ras activity in the studied compartments in cells expressing a G protein coupling-deficient AT(1)-R mutant ((125)DRY(127) to (125)AAY(127)). These data suggest that AngII can stimulate Ras activity in the TGN and ER with a G protein-dependent mechanism, which does not require β-arrestin-mediated signaling, receptor internalization, and EGF receptor transactivation.  相似文献   

17.
Angiotensin II (AngII) is known to act in the anteriorpituitary through phosphatidiloinositol breakdown, increasing the level of inositol-1,4,5-trisphosphate (IP(3)) and diacyloglycerol (DAG), a potential activator of protein kinase C (PKC). We examined the effect of estradiol and progesterone treatment in vivo on IP(3) levels and activity of PKC under the influence of AngII. Three groups of intact female rats received in vivo injections of 17-beta-estradiol, progesterone, and oil (control) for five days, and then the in vitro effect of AngII was examined using homogenate of the anterior pituitary. AngII increased either the IP(3) concentration or the synapsin I phosphorylation catalyzed by PKC. Estradiol enhanced the basal (without AngII) IP(3) level and PKC activity induced by AngII. Progesterone did not change the basal and AngII-induced IP(3) concentrations. On the other hand, it decreased the basal PKC activity and blocked the effect of AngII. Our data suggest that ovarian steroids can modulate the effect of AngII on the anterior pituitary gland.  相似文献   

18.
19.
20.
The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号