首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total respiratory input (Zin) and transfer (Ztr) impedances were obtained from 4 to 30 Hz in 10 healthy subjects breathing air and He-O2. Zin was measured by applying pressure oscillations around the head to minimize the upper airway shunt and Ztr by applying pressure oscillations around the chest. Ztr was analyzed with a six-coefficient model featuring airways resistance (Raw) and inertance (Iaw), alveolar gas compressibility, and tissue resistance, inertance, and compliance. Breathing He-O2 significantly decreased Raw (1.35 +/- 0.32 vs. 1.74 +/- 0.49 cmH2O.l-1.s in air, P less than 0.01) and Iaw (0.59 +/- 0.33 vs. 1.90 +/- 0.44 x 10(-2) cmH2O.l-1.s2), but, as expected, it did not change the tissue coefficients significantly. Airways impedance was also separately computed by combining Zin and Ztr data. This approach demonstrated similar variations in Raw and Iaw with the lighter gas mixture. With both analyses, however, the changes in Iaw were more than what was expected from the change in density. This indicates that factors other than gas inertance are included in Iaw and reveals the short-comings of the six-coefficient model to interpret impedance data.  相似文献   

2.
The influence of inspiratory and expiratory flow magnitude, lung volume, and lung volume history on respiratory system properties was studied by measuring transfer impedances (4-30 Hz) in seven normal subjects during various constant flow maneuvers. The measured impedances were analyzed with a six-coefficient model including airway resistance (Raw) and inertance (Iaw), tissue resistance (Rti), inertance (Iti), and compliance (Cti), and alveolar gas compressibility. Increasing respiratory flow from 0.1 to 0.4 1/s was found to increase inspiratory and expiratory Raw by 63% and 32%, respectively, and to decrease Iaw, but did not change tissue properties. Raw, Iti, and Cti were larger and Rti was lower during expiration than during inspiration. Decreasing lung volume from 70 to 30% of vital capacity increased Raw by 80%. Cti was larger at functional residual capacity than at the volume extremes. Preceding the measurement by a full expiration rather than by a full inspiration increased Iaw by 15%. The data suggest that the determinants of Raw and Iaw are not identical, that airway hysteresis is larger than lung hysteresis, and that respiratory muscle activity influences tissue properties.  相似文献   

3.
As a pulmonary component of Predictive Studies V, designed to determine O2 tolerance of multiple organs and systems in humans at 3.0-1.5 ATA, pulmonary function was evaluated at 1.0 ATA in 13 healthy men before and after O2 exposure at 3.0 ATA for 3.5 h. Measurements included flow-volume loops, spirometry, and airway resistance (Raw) (n = 12); CO diffusing capacity (n = 11); closing volumes (n = 6); and air vs. HeO2 forced vital capacity maneuvers (n = 5). Chest discomfort, cough, and dyspnea were experienced during exposure in mild degree by most subjects. Mean forced expiratory volume in 1 s (FEV1) and forced expiratory flow at 25-75% of vital capacity (FEF25-75) were significantly reduced postexposure by 5.9 and 11.8%, respectively, whereas forced vital capacity was not significantly changed. The average difference in maximum midexpiratory flow rates at 50% vital capacity on air and HeO2 was significantly reduced postexposure by 18%. Raw and CO diffusing capacity were not changed postexposure. The relatively large change in FEF25-75 compared with FEV1, the reduction in density dependence of flow, and the normal Raw postexposure are all consistent with flow limitation in peripheral airways as a major cause of the observed reduction in expiratory flow. Postexposure pulmonary function changes in one subject who convulsed at 3.0 h of exposure are compared with corresponding average changes in 12 subjects who did not convulse.  相似文献   

4.
Short-term intraindividual variability of the parameters derived from respiratory transfer impedance (Ztr) measured from 4 to 32 Hz was studied in 10 healthy subjects. The corresponding 95% confidence intervals (CIo) were compared with those computed from a single set of data (CIL) according to Lutchen and Jackson (J. Appl. Physiol. 62: 403-413, 1987). Ztr was analyzed with the six-coefficient model of DuBois et al. (J. Appl. Physiol. 8: 587-594, 1956), which includes airway resistance (Raw) and inertance (Iaw), tissue resistance (Rti), inertance (Iti), and compliance (Cti), and alveolar gas compressibility (Cg). The lowest variability was seen for Iaw (CIo = 11.1%), closely followed by Raw (14.3%) and Cti (14.8%), and the largest for Rti and Iti (24.6 and 93.6%, respectively). Using a simpler model, where Iti was excluded, significantly decreased the variability of Iaw (P less than 0.01) and Rti (P less than 0.05) but was responsible for a systematic decrease of Raw and Iaw and increase of Rti. Except for Raw with both models and Iaw with the simpler model, CIL was greater than CIo. Whatever the model, a high correlation between both sets of confidence intervals was found for Rti and Iaw, whereas no correlation was seen for Raw. This suggests that the variability of the former coefficients mainly reflects experimental noise, whereas that of the latter is largely due to biological variability.  相似文献   

5.
Mechanical parameters of the respiratory system are often estimated from respiratory impedances using lumped-element inverse models. One such six-element model is composed of an airway branch [with a resistance (Raw) and inertance (Iaw)] separated from a tissue branch [with a resistance (Rt), inertance (It), and compliance (Ct)] by a shunt compliance representing alveolar gas compression (Cg). Even though the airways are known to have frequency-dependent resistance and inertance, these inverse models have been composed of linear frequency-independent elements. In this study we investigated the use of inverse models where the airway branch was represented by a frequency-independent Raw and Iaw, a Raw that is linearly related to frequency and an Iaw that is independent of frequency, and a system of identical parallel tubes the impedance of which was computed from the tube radius and length. These inverse models were used to analyze airway and respiratory impedances between 2 and 1,024 Hz that were predicted from an anatomically detailed forward model. The forward model represented the airways by an asymmetrically branched network with a terminal impedance representative of known Cg, Rt, It, and Ct. For respiratory impedances between 2 and 128 Hz, all models fit the data reasonably well, and reasonably accurate estimates of Cg, Rt, It, and Ct were extracted from these data. For data above 200 Hz, however, only the multiple-tube model accurately fitted respiratory impedances (Zrs). This model fitted the Zrs data best when composed of 27 tubes, each having a radius of 0.148 cm and a length of 16.5 cm.  相似文献   

6.
The physiological consequences of exposure to several possible spacecraft atmospheres were evaluated. Each atmosphere contained oxygen at a partial pressure of 180 mm Hg. Rabbits and rats were exposed at 1 atm abs. for one week each to atmospheres containing nitrogen, helium, argon or neon; and to pure oxygen at 200 mm Hg. In addition rats were exposed at a total pressure of 474 mm Hg to atmospheres containing nitrogen, helium or neon.Metabolic rates were increased in animals exposed to helium-oxygen at sea level, and reduced in those exposed to the low pressure, pure oxygen environment. Rates during sea-level exposures to argon and neon, and during the altitude exposures, did not differ appreciably from results obtained in air at sea level. Rabbits sustained a significant loss of hemoglobin (9%) and red blood cells during their exposure to helium-oxygen.These responses are consistent with the thermal characteristics of the several gaseous environments. A good correlation was found to exist between the calculated relative convective heat transfer in the various atmospheres and the observed metabolic rates. The possibility of an effect of helium at the molecular level has not been ruled out completely.After saturation with the inert gases studied, rats decompressed to 100 mm Hg showed the most severe symptoms of decompression sickness; nitrogen produced less damage; animals exposed to helium or neon were free of serious symptoms.The data provide the first experimental support for several theoretical advantages of neon for use in space cabin atmospheres.This work was supported by the USAF School of Aerospace Medicine under contract AF 41 (609)-2711, to Union Carbide Corporation, Tonawanda, N.Y. These experiments were conducted in 1965–1966 as a preliminary screening whose intent was to compare a wide variety of environmental and physiological parameters in a restricted number of subjects; the data should be interpreted with these limitations in mind.  相似文献   

7.
The frequency response of the respiratory system was studied in the range from 3 to 70 Hz in 15 normal subjects by applying sinusoidal pressure variations around the chest and measuring gas flow at the mouth. The observed input-output relationships were systematically compared to those predicted on the basis of linear differential equations of increasing order. From 3 to 20 Hz the behavior of the system was best described by a 3rd-order equation, and from 3 to 50 Hz by a 4th-order one. A mechanistic model of the 4th order, featuring tissue compliance (Ct), resistance (Rt) and inertance (It), alveolar gas compressibility (Cg) and airway resistance (Raw), and inertance (Iaw) was developed. Using that model, the following mean values were found: Ct = 2.08-10(-2)1-hPa-1 (1 hPa congruent to 1 cm of water); Rt = 1.10-hPa-1(-1)-s; It = 0.21-10(-2)hPa-1(-1)-s2; Raw = 1.35-hPa-1(-1)-s; Iaw = 2.55-10(-2)hPa-1(-1)-s2. Additional experiments devised to validate the model were reasonably successful, suggesting that the physical meaning attributed to the coefficients was correct. The validity of the assumptions and the physiological meaning of the coefficients are discussed.  相似文献   

8.
The inhibitory action of compressed hydrocarbon gases on the growth of the yeast Saccharomyces cerevisiae was investigated quantitatively by microcalorimetry. Both the 50% inhibitory pressure (IP(50)) and the minimum inhibitory pressure (MIP), which are regarded as indices of the toxicity of hydrocarbon gases, were determined from growth thermograms. Based on these values, the inhibitory potency of the hydrocarbon gases increased in the order methane < ethane < propane < i-butane < n-butane. The toxicity of these hydrocarbon gases correlated to their hydrophobicity, suggesting that hydrocarbon gases interact with some hydrophobic regions of the cell membrane. In support of this, we found that UV absorbing materials at 260 nm were released from yeast cells exposed to compressed hydrocarbon gases. Additionally, scanning electron microscopy indicated that morphological changes occurred in these cells.  相似文献   

9.
The adsorption of helium and neon mixtures on single-walled carbon nanotubes (SWCNTs) was investigated at various temperatures (subcritical and supercritical) and pressures using canonical Monte Carlo (CMC) simulation. Adsorption isotherms were obtained at different temperatures (4, 40, 77 and 130 K) and pressures ranging from 1 to 16 MPa. Separation factors and isosteric enthalpies of adsorption were also calculated. Moreover, the adsorption isotherms were obtained at constant specific temperatures (4 and 40 K) and pressures (0.2 and 1.0 MPa) as a function of the amount adsorbed. All of the adsorption isotherms for an equimolar mixture of helium and neon have a Langmuir shape, indicating that no capillary condensation occurs. Both the helium and the neon adsorption isotherms exhibit similar behavior, and slightly more of the helium and neon mixture is adsorbed on the inner surfaces of the SWCNTs than on their outer surfaces. More neon is adsorbed than helium within the specified pressure range. The data obtained show that the isosteric enthalpies for the adsorption of neon are higher than those for helium under the same conditions, which means that adsorption of neon preferentially occurs by (15, 15) SWCNTs. Furthermore, the isosteric enthalpies of adsorption of both gases decrease with increasing temperature.  相似文献   

10.
The inhibitory action of compressed hydrocarbon gases on the growth of the yeast Saccharomyces cerevisiae was investigated quantitatively by microcalorimetry. Both the 50% inhibitory pressure (IP50) and the minimum inhibitory pressure (MIP), which are regarded as indices of the toxicity of hydrocarbon gases, were determined from growth thermograms. Based on these values, the inhibitory potency of the hydrocarbon gases increased in the order methane << ethane < propane < i-butane < n-butane. The toxicity of these hydrocarbon gases correlated to their hydrophobicity, suggesting that hydrocarbon gases interact with some hydrophobic regions of the cell membrane. In support of this, we found that UV absorbing materials at 260 nm were released from yeast cells exposed to compressed hydrocarbon gases. Additionally, scanning electron microscopy indicated that morphological changes occurred in these cells.  相似文献   

11.
We measured dynamic pulmonary compliance (Cdyn( in nine asymptomatic young men breathing gases of different density. When corrected for gas inertia, Cdyn was significantly lower during dense gas breathing (sulfur hexafluoride) than during air breathing. At higher breathing frequencies (60-90 breaths/min), Cdyn was greater on helium than on air. Static compliance was not different while breathing the three gas mixtures. These results may be explained by a density dependence of airways resistance in parallel lung units which contribute to frequency dependence of dynamic compliance. We conclude that most frequency-dependent behavior occurs among intraregional lung units subtended from airways between segmental bronchi and peripheral airways.  相似文献   

12.
Asthma is a variable disease with changes in symptoms and airway function over many time scales. Airway resistance (Raw) is variable and thought to reflect changes in airway smooth muscle activity, but just how variation throughout the airway tree and the influence of gas distribution abnormalities affect Raw is unclear. We used a multibranch airway lung model to evaluate variation in airway diameter size, the role of coherent regional variation, and the role of gas distribution abnormalities on mean Raw (Raw) and variation in Raw as described by the SD (SDRaw). We modified an anatomically correct airway tree, provided by Merryn Tawhai (The University of Auckland, New Zealand), consisting of nearly 4,000 airways, to produce temporal and spatial heterogeneity. As expected, we found that increasing the diameter variation by twofold, with no change in the mean diameter, increased SDRaw more than fourfold. Perhaps surprisingly, Raw was proportional to SDRaw under several conditions-when either mean diameter was fixed, and its SD varied or when mean diameter varied, and SD was fixed. Increasing the size of a regional absence in gas distribution (ventilation defect) also led to a proportionate increase in both Raw and SDRaw. However, introducing regional dependence of connected airways strongly increased SDRaw by as much as sixfold, with little change in Raw. The model was able to predict previously reported Raw distributions and correlation of SDRaw on Raw in healthy and asthmatic subjects. The ratio of SDRaw to Raw depended most strongly on interairway coherent variation and only had a slight dependence on ventilation defect size. These findings may explain the linear correlation between variation and mean values of Raw but also suggest that regional alterations in gas distribution and local coordination in ventilation amplify any underlying variation in airway diameters throughout the airway tree.  相似文献   

13.
We studied the structural and dynamical properties of methane and ethane in montmorillonite (MMT) slit pore of sizes 10, 20 and 30 Å using grand canonical Monte Carlo and classical molecular dynamics (MD) simulations. The isotherm, at 298.15 K, is generated for pressures up to 60 bar. The molecules preferentially adsorb at the surface as indicated by the density profile. In case of methane, we observe only a single layer, at the pore wall, whose density increases with increasing pressure. However, ethane also displays a second layer, though of low density in case of pore widths 20 and 30 Å. In-plane self-diffusion coefficient, D, of methane and ethane is of the order of 10? 6 m2/s. At low pressure, D increases significantly with the pore size. However, D decreases rapidly with increasing pressure. Furthermore, the effect of pore size on D diminishes at high pressure. Ideal adsorbed solution theory is used to understand the adsorption behaviour of the binary mixture of methane (80%) and ethane (20%) at 298.15 K. Furthermore, we calculate the selectivity of the gases at various pressures of the mixture, and found high selectivity for ethane in MMT pores. However, selectivity of ethane decreases with increase in pressure or pore size.  相似文献   

14.
Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60Co gamma-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60Co gamma-rays was 3.3 +/- 0.2 while for helium ions it was 1.2 +/- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60Co gamma-rays.  相似文献   

15.
A tracking impedance estimation technique was developed to follow the changes in total respiratory impedance (Zrs) during slow total lung capacity maneuvers in six anesthetized and mechanically ventilated BALB/c mice. Zrs was measured with the wave-tube technique and pseudorandom forced oscillations at nine frequencies between 4 and 38 Hz during inflation from a transrespiratory pressure of 0-20 cmH2O and subsequent deflation, each lasting for approximately 20 s. Zrs was averaged for 0.125 s and fitted by a model featuring airway resistance (Raw) and inertance, and tissue damping and elastance (H). Lower airway conductance (Glaw) was linearly related to volume above functional residual capacity (V) between 0 and 75-95% maximum V, with a mean slope of dGlaw/dV = 13.6 +/- 4.6 cmH2O-1. s-1. The interdependence of Raw and H was characterized by two distinct and closely linear relationships for the low- and high-volume regions, separated at approximately 40% maximum V. Comparison of Raw with the highest-frequency resistance of the total respiratory system revealed a marked volume-dependent contribution of tissue resistance to total respiratory system resistance, resulting in the overestimation of Raw by 19 +/- 8 and 163 +/- 40% at functional residual capacity and total lung capacity, respectively, whereas the lowest frequency reactance was proportional to H; these findings indicate that single-frequency resistance values may become inappropriate as surrogates of Raw when tissue impedance is changing.  相似文献   

16.
We have previously produced evidence that, in patients with obstructive lung disease, compliance of extrathoracic airways is responsible for lack of mouth-to-alveolar pressure equilibration during respiratory efforts against a closed airway. The flow interruption method for measuring respiratory resistance (Rint) is potentially faced with the same problems. We reassessed the merits of the interruption technique by rendering the extrathoracic airways more rigid and by using a rapid shutter. We measured airway resistance (Raw) with whole body plethysmography during panting (at 2 Hz) and Rint during quiet breathing. Rint and Raw were expressed as specific airway (sGaw) and interruptive conductance (sGint), respectively. In nine healthy subjects (cheeks supported), sGint (0.140 +/- 0.050 s-1.cmH2O-1) was lower (P less than 0.02) than sGaw (0.182 +/- 0.043 s-1.cmH2O-1). By contrast, in 12 patients with severe obstructive lung disease (forced expiratory volume in 1 s/vital capacity = 41.0 +/- 19.8%), sGint (0.058 +/- 0.012 s-1.cmH2O-1) was higher (P less than 0.05) than sGaw (0.047 +/- 0.007 s-1.cmH2O-1), when the cheeks were supported. When the mouth floor was also supported, average values of sGaw (0.048 +/- 0.008 s-1.cmH2O-1) and sGint (0.049 +/- 0.014 s-1.cmH2O-1) became similar. In conclusion, we confirm previous findings in healthy subjects of higher values of Rint, with respect to Raw, probably because of differences in glottis opening between quiet breathing and panting. In airflow obstruction, supporting both the cheeks and the mouth floor decreased sGint, which became similar to sGaw.  相似文献   

17.
Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.  相似文献   

18.
A comparison of the dose-response behavior of canine airways and parenchyma   总被引:1,自引:0,他引:1  
We compared the histamine responsiveness of canine airways and parenchymal tissues in six anesthetized paralyzed open-chest mongrel dogs, partitioning total lung resistance (RL) into airway resistance (Raw) and tissue viscance (Vti). Pressure was measured during tidal breathing (frequency was 0.3 Hz) at the trachea and in three alveolar regions by use of alveolar capsules. Measurements were taken before and after the delivery of increasing concentrations of aerosolized histamine (0.1-30 mg/ml). We found that Vti accounted for 78 +/- 8% of RL under base-line conditions; this proportion remained relatively constant throughout the histamine concentration-response curve. There was a significant correlation between percent change in Vti and percent change in Raw at all levels of histamine-induced constriction (P less than 0.001). Moreover, the sensitivity of the tissues and airways (defined as the concentration of histamine required to double resistance) was remarkably similar. We conclude that, at this frequency of ventilation, Vti accounts for the major portion of RL both under base-line conditions and after histamine-induced constriction. Although increases in RL cannot be attributed solely to events occurring in the airways, the close correlation between changes in Raw and Vti and the similar sensitivities of the two support the use of indexes reflecting changes in airway caliber as an indicator of overall lung histamine responsiveness.  相似文献   

19.
Salmonella newport and Pseudomonas fluorescens were dried together in papain digest broth and sucrose-glutamate, and stored in several gases at various water activities (a(w)) between 0.00 and 0.40 at 25 C for various periods up to 81 weeks. Both S. newport and P. fluorescens, dried in papain digest broth and stored in air, died rapidly if the conditions were very dry (0.00 a(w)) or moist (0.40 a(w)). Storage in carbon dioxide and argon gave greater survival than storage in air but lower survival than did storage in nitrogen or in vacuo. When the organisms were dried in a sucrose-glutamate mixture the differences between the gases were very small, and variations in residual water were less important. Of the inert gases, argon gave the best survival when the organisms were dried in papain digest broth, especially at 0.00 a(w); the survival in neon and krypton was lower and in xenon and helium it was much lower.  相似文献   

20.
While airway constriction has been shown to affect exhaled nitric oxide (NO), the mechanisms and location of constricted airways most likely to affect exhaled NO remain obscure. We studied the effects of histamine-induced airway constriction and ventilation heterogeneity on exhaled NO at 50 ml/s (Fe(NO,50)) and combined this with model simulations of Fe(NO,50) changes due to constriction of airways at various depths of the lung model. In 20 normal subjects, histamine induced a 26 +/- 15(SD)% Fe(NO,50) decrease, a 9 +/- 6% forced expiratory volume in 1 s (FEV(1)) decrease, a 19 +/- 9% mean forced midexpiratory flow between 25% and 75% forced vital capacity (FEF(25-75)) decrease, and a 94 +/- 119% increase in conductive ventilation heterogeneity. There was a significant correlation of Fe(NO,50) decrease with FEF(25-75) decrease (P = 0.006) but not with FEV(1) decrease or with increased ventilation heterogeneity. Simulations confirmed the negligible effect of ventilation heterogeneity on Fe(NO,50) and showed that the histamine-induced Fe(NO,50) decrease was due to constriction, with associated reduction in NO flux, of airways located proximal to generation 15. The model also indicated that the most marked effect of airways constriction on Fe(NO,50) is situated in generations 10-15 and that airway constriction beyond generation 15 markedly increases Fe(NO,50) due to interference with the NO backdiffusion effect. These mechanical factors should be considered when interpreting exhaled NO in lung disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号