首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by mutations in either of two genes, TSC1 and TSC2. Point mutations and small indels account for most TSC1 and TSC2 mutations. We examined 261 TSC DNA samples (209 small-mutation-negative and 52 unscreened) for large deletion/duplication mutations using multiplex ligation-dependent probe amplification (MLPA) probe sets designed to permit interrogation of all TSC1/2 exons, as well as 15–50 kb of flanking sequence. Large deletion/duplication mutations in TSC1 and TSC2 were identified in 54 patients, of which 50 were in TSC2, and 4 were in TSC1. All but two mutations were deletions. Only 13 deletions were intragenic in TSC2, and one in TSC1, so that 39 (73%) deletions extended beyond the 5′, 3′ or both ends of TSC1 or TSC2. Mutations were identified in 24% of small-mutation-negative and 8% of unscreened samples. Eight of 54 (15%) mutations were mosaic, affecting 34–62% of cells. All intragenic mutations were confirmed by LR-PCR. Genotype/phenotype analysis showed that all (21 of 21) patients with TSC2 deletions extending 3′ into the PKD1 gene had kidney cysts. Breakpoints of intragenic deletions were randomly distributed along the TSC2 sequence, and did not preferentially involve repeat sequence elements. Our own 20-plex probe sets gave more robust performance than the 40-plex probe sets from MRC-Holland. We conclude that large deletions in TSC1 and TSC2 account for about 0.5 and 6% of mutations seen in TSC patients, respectively, and MLPA is a highly sensitive and accurate detection method, including for mosaicism. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Genomic DNA sequence analysis was used to define the extent of deletions within the C1 inhibitor gene in two families with type I hereditary angioneurotic edema. Southern blot analysis initially indicated the presence of the partial deletions. One deletion was approximately 2 kb and included exon VII, whereas the other was approximately 8.5 kb and included exons IV–VI. Genomic libraries from an affected member of each family were constructed and clones containing the deletions were analyzed. Sequence analysis of the deletion joints of the mutants and corresponding regions of the normal gene in the two families demonstrated that both deletion joints resulted from recombination of two Alu repetitive DNA elements. Alu repeat sequences from introns VI and VII combined to make a novel Alu in family A, and Alu sequences in introns III and VI were spliced to make a new Alu in family B. The splice sites in the Alu sequences of both mutants were located in the left arm of the Alu element, and both recombination joints overlapped one of the RNA polymerase III promoter sequences. Because the involved Alu sequences, in both instances, were oriented in the same direction, unequal crossingover is the most likely mechanism to account for these mutations.  相似文献   

3.
Han JM  Sahin M 《FEBS letters》2011,585(7):973-980
Over the past several years, the study of a hereditary tumor syndrome, tuberous sclerosis complex (TSC), has shed light on the regulation of cellular proliferation and growth. TSC is an autosomal dominant disorder that is due to inactivating mutations in TSC1 or TSC2 and characterized by benign tumors (hamartomas) involving multiple organ systems. The TSC1/2 complex has been found to play a crucial role in an evolutionarily-conserved signaling pathway that regulates cell growth: the mTORC1 pathway. This pathway promotes anabolic processes and inhibits catabolic processes in response to extracellular and intracellular factors. Findings in cancer biology have reinforced the critical role for TSC1/2 in cell growth and proliferation. In contrast to cancer cells, in the CNS, the TSC1/2 complex not only regulates cell growth/proliferation, but also orchestrates an intricate and finely tuned system that has distinctive roles under different conditions, depending on cell type, stage of development, and subcellular localization. Overall, TSC1/2 signaling in the CNS, via its multi-faceted roles, contributes to proper neural connectivity. Here, we will review the TSC signaling in the CNS.  相似文献   

4.
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterized by hamartoma formation in various organs. Two genes responsible for the disease, TSC1 and TSC2, have been identified. The TSC1 and TSC2 proteins, also called hamartin and tuberin, respectively, have been shown to regulate cell growth through inhibition of the mammalian target of rapamycin pathway. TSC1 is known to stabilize TSC2 by forming a complex with TSC2, which is a GTPase-activating protein for the Rheb small GTPase. We have identified HERC1 as a TSC2-interacting protein. HERC1 is a 532-kDa protein with an E3 ubiquitin ligase homology to E6AP carboxyl terminus (HECT) domain. We observed that the interaction of TSC1 with TSC2 appears to exclude TSC2 from interacting with HERC1. Disease mutations in TSC2, which result in its destabilization, allow binding to HERC1 in the presence of TSC1. Our study reveals a potential molecular mechanism of how TSC1 stabilizes TSC2 by excluding the HERC1 ubiquitin ligase from the TSC2 complex. Furthermore, these data reveal a possible biochemical basis of how certain disease mutations inactivate TSC2.  相似文献   

5.
C Nottenburg  W M Gallatin  T St John 《Gene》1990,95(2):279-284
Lymphocyte adhesion to high endothelial venule cells in lymphoid organs of mice is mediated by several cell-surface glycoproteins, one of which, gp90MEL-14, is detected by the MEL-14 monoclonal antibody (mAb). The MEL-14 mAb was used to select two variants of the EL4 cell line, EL4MEL-14-hi and EL4-MEL-14-lo, that have disparate cell surface expression of this adhesion receptor. A cDNA library constructed from EL4MEL-14-hi mRNA was enriched for sequences present at higher levels in EL4MEL-14-hi cells than EL4MEL-14-lo cells. Quantitative analysis of candidate differential clones by RNA probe protection methods identified five clones whose steady-state mRNA levels were increased in the EL4MEL-14-hi cells. One of these clones, DIFF6, is derived from an RNA whose expression level is higher in several cell lines producing high amounts of MEL-14-reactive gp90, and absent or present at lower levels in several cell lines expressing low levels of this glycoprotein. However, DIFF6 does not encode gp90MEL-14. The nucleotide sequence of this clone predicts a relatively hydrophilic protein characteristic of a cytoplasmic or nuclear protein. Present experiments indicate that expression of gp90MEL-14, a cell-surface-adhesion receptor molecule, may be coregulated with additional cytoplasmic or nuclear factors.  相似文献   

6.
Tuberous sclerosis complex (TSC) 1 and TSC2 are thought to be involved in protein translational regulation and cell growth, and loss of their function is a cause of TSC and lymphangioleiomyomatosis (LAM). However, TSC1 also activates Rho and regulates cell adhesion. We found that TSC2 modulates actin dynamics and cell adhesion and the TSC1-binding domain (TSC2-HBD) is essential for this function of TSC2. Expression of TSC2 or TSC2-HBD in TSC2-/- cells promoted Rac1 activation, inhibition of Rho, stress fiber disassembly, and focal adhesion remodeling. The down-regulation of TSC1 with TSC1 siRNA in TSC2-/- cells activated Rac1 and induced loss of stress fibers. Our data indicate that TSC1 inhibits Rac1 and TSC2 blocks this activity of TSC1. Because TSC1 and TSC2 regulate Rho and Rac1, whose activities are interconnected in a reciprocal fashion, loss of either TSC1 or TSC2 function may result in the deregulation of cell motility and adhesion, which are associated with the pathobiology of TSC and LAM.  相似文献   

7.
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterised by the development of hamartomas in a variety of organs and tissues. The disease is caused by mutations in either the TSC1 gene on chromosome 9q34, or the TSC2 gene on chromosome 16p13.3. The TSC1 and TSC2 gene products, TSC1 and TSC2, interact to form a protein complex that inhibits signal transduction to the downstream effectors of the target of rapamycin complex 1 (TORC1). Here we investigate TSC1 structure and function by analysing a series of truncated TSC1 proteins. We identify specific regions of the protein that are important for TSC1 stability, localisation, interactions and function.  相似文献   

8.
Reduced expression of the TSC2 tumour suppressor gene product, tuberin, has been reported in sporadic astrocytomas, suggesting that the TSC genes may play a role in formation of sporadic glial or glioneuronal tumours. We studied paired constitutional and tumour DNA samples from 100 patients with sporadic glial and glioneuronal tumours for loss of heterozygosity (LOH) at the TSC1 and TSC2 loci using a combination of seven previously reported and seven novel polymorphic markers. LOH was seen in 1/16 astrocytomas, 3/15 ependymomas, 5/16 gangliogliomas, 2/14 glioblastoma multiforme, 0/7 oligodendrogliomas, 0/7 tumours of mixed oligodendrocytic/astrocytic histology, 2/11 pilocytic astrocytomas and 0/1 subependymal giant cell astrocytomas informative at both loci. However, SSCP screening of all coding exons of the TSC1 or TSC2 genes in the tumours displaying LOH, and of both genes in 21 gangliogliomas, revealed no intragenic mutations. The lack of demonstrable inactivation of both alleles of either TSC gene in any of the tumours investigated suggests that they do not play a frequent role in the aetiology of sporadic glial or glioneuronal tumours.  相似文献   

9.
mTORC1 is a critical regulator of cell growth that integrates multiple signals and is deregulated in cancer. We previously reported that mTORC1 regulation by hypoxia involves Redd1 and the Tsc1/Tsc2 complex. Here we show that Redd1 induction by hypoxia is tissue dependent and that hypoxia signals are relayed to mTORC1 through different pathways in a tissue-specific manner. In the liver, Redd1 induction is restricted to the centrilobular area, and in primary hepatocytes, mTORC1 inhibition by hypoxia is independent of Redd1. Furthermore, Tsc1/Tsc2 and Arnt (Hif-1β) are similarly dispensable. Hypoxia signaling in hepatocytes involves Lkb1, AMP-activated protein kinase (AMPK), and raptor. Differences in signal relay extend beyond hypoxia and involve AMPK signaling. AMPK activation (using 5-aminoimidazole-4-carboxamide riboside [AICAR]) induces raptor phosphorylation and inhibits mTORC1 in both mouse embryo fibroblasts (MEFs) and hepatocytes, but whereas mTORC1 inhibition is Tsc1/Tsc2 dependent in MEFs, it is independent in hepatocytes. In liver cells, raptor phosphorylation is essential for both AMPK and hypoxia signaling. Thus, context-specific signals are required for raptor phosphorylation-induced mTORC1 inhibition. Our data illustrate a heretofore unappreciated topological complexity in mTORC1 regulation. Interestingly, topological differences in mTORC1 regulation by the tumor suppressor proteins Lkb1 and Tsc1/Tsc2 may underlie their tissue specificity of tumor suppressor action.  相似文献   

10.
Disease causing aberrations in both tuberous sclerosis predisposing genes, TSC1 and TSC2, comprise nearly every type of alteration with a predominance of small truncating mutations distributed over both genes. We performed an RNA based screening of the entire coding regions of both TSC genes applying the protein truncation test (PTT) and identified a high proportion of unusual splicing abnormalities affecting the TSC2 gene. Two cases exhibited different splice acceptor mutations in intron 9 (IVS9-15G-->A and IVS9-3C-->G) both accompanied by exon 10 skipping and simultaneous usage of a cryptic splice acceptor in exon 10. Another splice acceptor mutation (IVS38-18A-->G) destroyed the putative polypyrimidine structure in intron 38 and resulted in simultaneous intron retention and usage of a downstream cryptic splice acceptor in exon 39. Another patient bore a C-->T transition in intron 8 (IVS8+281C-->T) activating a splice donor site and resulting in the inclusion of a newly recognised exon in the mRNA followed by a premature stop. These splice variants deduced from experimental results are additionally supported by RNA secondary structure analysis based on free energy minimisation. Three of the reported splicing anomalies are due to sequence changes remote from exon/intron boundaries, described for the first time in TSC. These findings highlight the significance of investigating intronic changes and their consequences on the mRNA level as disease causing mutations in TSC.  相似文献   

11.
Small frameshift deletions within the COL4A5 gene were identified in three Alport syndrome Italian families by non-isotopic single-strand conformation polymorphism (SSCP) screening: in family RMA, a 7-bp deletion (GGGTGAA) in exon 39; in family DGR, a 4-bp deletion (TGGA) in exon 41; in family MIB, deletion of a G in exon 50. The phenotype was characterized by juvenile-onset renal failure with sensorineural hearing loss in males, and a milder clinical pattern in heterozygous females.  相似文献   

12.
Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) containing the neuropeptide Urocortin-1 (Ucn1) in excessive ethanol (EtOH) intake and EtOH sensitivity. Here, we expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10% EtOH vs. tap water) to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO) and wild-type (WT) mice. Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2) were involved in the rewarding and aversive effects of EtOH (2 g/kg, i.p.). Results from these studies revealed that (1) genetic deletion of Ucn1 dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2) lesion of the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing Ucn1, and (3) genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1 had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward.  相似文献   

13.
14.
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor gene syndrome due to germline mutations in either TSC1 or TSC2. 10–15% of TSC individuals have no mutation identified (NMI) after thorough conventional molecular diagnostic assessment. 53 TSC subjects who were NMI were studied using next generation sequencing to search for mutations in these genes. Blood/saliva DNA including parental samples were available from all subjects, and skin tumor biopsy DNA was available from six subjects. We identified mutations in 45 of 53 subjects (85%). Mosaicism was observed in the majority (26 of 45, 58%), and intronic mutations were also unusually common, seen in 18 of 45 subjects (40%). Seventeen (38%) mutations were seen at an allele frequency < 5%, five at an allele frequency < 1%, and two were identified in skin tumor biopsies only, and were not seen at appreciable frequency in blood or saliva DNA. These findings illuminate the extent of mosaicism in TSC, indicate the importance of full gene coverage and next generation sequencing for mutation detection, show that analysis of TSC-related tumors can increase the mutation detection rate, indicate that it is not likely that a third TSC gene exists, and enable provision of genetic counseling to the substantial population of TSC individuals who are currently NMI.  相似文献   

15.
M J Scott  M J Tsai  B W O'Malley 《Biochemistry》1987,26(21):6831-6840
The location of CR1 middle repetitive sequences within or near the boundaries of the ovalbumin DNase I sensitive domain has suggested that CR1 sequences may play a role in defining transition regions of DNase I sensitivity in hen oviduct nuclei. We have examined this apparent relationship of CR1 sequences and transitions of chromatin structure by determining the DNase I sensitivity in oviduct nuclei of a 47-kilobase region that contains five CR1 sequences and the transcribed ovomucoid and ovoinhibitor genes. We find that three of the CR1 sequences occur within a broad transition region of decreasing DNase I sensitivity downstream of the ovomucoid gene. Another CR1 is in a region of decreased DNase I sensitivity within the ovoinhibitor gene. The fifth CR1 sequence is in a DNase I sensitive region between the two genes but which is less sensitive to DNase I digestion than the region immediately upstream from the ovomucoid gene. Thus, the CR1 sequences occur within regions of reduced relative DNase I sensitivity, suggesting that CR1s could facilitate the formation of a chromatin conformation that is less sensitive to DNase I digestion. Unexpectedly, the noncoding strand of sequences within and immediately adjacent to the 5' end of the actively transcribed ovomucoid and ovalbumin genes was less sensitive to DNase I digestion than their respective coding strands.  相似文献   

16.
FIP200 (focal adhesion kinase [FAK] family interacting protein of 200 kD) is a newly identified protein that binds to the kinase domain of FAK and inhibits its kinase activity and associated cellular functions. Here, we identify an interaction between FIP200 and the TSC1-TSC2 complex through FIP200 binding to TSC1. We found that association of FIP200 with the TSC1-TSC2 complex correlated with its ability to increase cell size and up-regulate S6 kinase phosphorylation but was not involved in the regulation of cell cycle progression. Conversely, knockdown of endogenous FIP200 by RNA interference reduced S6 kinase phosphorylation and cell size, which required TSC1 but was independent of FAK. Furthermore, overexpression of FIP200 reduced TSC1-TSC2 complex formation, although knockdown of endogenous FIP200 by RNA interference did not affect TSC1-TSC2 complex formation. Lastly, we showed that FIP200 is important in nutrient stimulation-induced, but not energy- or serum-induced, S6 kinase activation. Together, these results suggest a cellular function of FIP200 in the regulation of cell size by interaction with the TSC1-TSC2 complex.  相似文献   

17.
Tuberous Sclerosis Complex (TSC) is an autosomal dominant disorder associated with mutations in TSC1, which codes for hamartin, or TSC2, which codes for tuberin. The brain is one of the most severely affected organs, and CNS lesions include cortical tubers and subependymal giant cell astrocytomas, resulting in mental retardation and seizures. Tuberin and hamartin function together as a complex in mammals and Drosophila. We report here the association of Pam, a protein identified as an interactor of Myc, with the tuberin-hamartin complex in the brain. The C terminus of Pam containing the RING zinc finger motif binds to tuberin. Pam is expressed in embryonic and adult brain as well as in cultured neurons. Pam has two forms in the rat CNS, an approximately 450-kDa form expressed in early embryonic stages and an approximately 350-kDa form observed in the postnatal period. In cortical neurons, Pam co-localizes with tuberin and hamartin in neurites and growth cones. Although Pam function(s) are yet to be defined, the highly conserved Pam homologs, HIW (Drosophila) and RPM-1 (Caenorhabditis elegans), are neuron-specific proteins that regulate synaptic growth. Here we show that HIW can genetically interact with the Tsc1.Tsc2 complex in Drosophila and could negatively regulate Tsc1.Tsc2 activity. Based on genetic studies, HIW has been implicated in ubiquitination, possibly functioning as an E3 ubiquitin ligase through the RING zinc finger domain. Therefore, we hypothesize that Pam, through its interaction with tuberin, could regulate the ubiquitination and proteasomal degradation of the tuberin-hamartin complex particularly in the CNS.  相似文献   

18.
19.
Cancer is an inheritable disorder of somatic cells. Environment and heredity both operate in the origins of human cancer. These environmental and genetic determinants of cancer can be classified into four groups designated "Oncodemes" [1].Oncodeme 1 is the irreducible "background" level of cancer due to spontaneous mutagenesis. Oncodeme 2 is "environmentally induced" cancer, whose causative agents are chemical carcinogens, radiation and viruses. Oncodeme 3 is basically "environmentally induced" cancer, but there are genetically determined differences among persons, e.g. the activation or inactivation of carcinogenes. Most human cancers are believed to belong to Oncodemes 2 and/or 3 (about 80%), for which the probability of the occurrence of the initial carcinogenic step(s) is increased, although the number of steps is not decreased. Oncodeme 1 would contain the approximately 20% that would remain if "environmentally induced" cancers (Oncodeme 2 and/or 3) were prevented. Lastly, Oncodeme 4 is "hereditary" cancer. Hereditary cancers could prove valuable in elucidating carcinogenesis, even though only a small proportion of cancers belong to this group. Here, we present a unique animal model of Oncodeme 4 for the study of problems in carcinogenesis; e.g. cell stage and tissue/cell-type-specific tumorigenesis, multistep carcinogenesis, species-specific differences in tumorigenesis, modifier gene(s) in renal carcinogenesis and cancer prevention.  相似文献   

20.
Lymphangioleiomyomatosis (LAM) is characterized by cystic lung destruction, resulting from proliferation of smooth-muscle-like cells, which have mutations in the tumor suppressor genes TSC1 or TSC2. Among 277 LAM patients, severe disease was associated with hypoxia and elevated red blood cell indexes that accompanied reduced pulmonary function. Because high red cell indexes could result from hypoxemia-induced erythropoietin (EPO) production, and EPO is a smooth muscle cell mitogen, we investigated effects of EPO in human cells with genetic loss of tuberin function, and we found that EPO increased proliferation of human TSC2-/-, but not of TSC2+/-, cells. A discrete population of cells grown from explanted lungs was characterized by the presence of EPO receptor and loss of heterozygosity for TSC2, consistent with EPO involvement. In LAM cells from lung nodules, EPO was localized to the extracellular matrix, supporting evidence for activation of an EPO-driven signaling pathway. Although the high red cell mass of LAM patients could be related to advanced disease, we propose that EPO, synthesized in response to episodic hypoxia, may increase disease progression by enhancing the proliferation of LAM cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号