首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies to the pre-erythrocytic antigens, circumsporozoite protein (CSP), thrombospondin-related adhesive protein (TRAP) and liver-stage antigen 1, have been measured in field studies of semi-immune adults and shown to correlate with protection from Plasmodium falciparum infection. A mathematical model is formulated to estimate the probability of sporozoite infection as a function of antibody titres to multiple pre-erythrocytic antigens. The variation in antibody titres from field data was used to estimate the relationship between the probability of P. falciparum infection per infectious mosquito bite and antibody titre. Using this relationship, we predict the effect of vaccinations that boost baseline CSP or TRAP antibody titres. Assuming the estimated relationship applies to vaccine-induced antibody titres, then single-component CSP or TRAP antibody-mediated pre-erythrocytic vaccines are likely to provide partial protection from infection, with vaccine efficacy of approximately 50 per cent depending on the magnitude of the vaccine-induced boost to antibody titres. It is possible that the addition of a TRAP component to a CSP-based vaccine such as RTS,S would provide an increase in infection-blocking efficacy of approximately 25 per cent should the problem of immunological interference between antigens be overcome.  相似文献   

2.
The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcgammaRI. This important finding documents the capacity of FcgammaRI to mediate potent antimalaria immunity and supports the development of FcgammaRI-directed therapy for human malaria.  相似文献   

3.
Roy SW  Ferreira MU  Hartl DL 《Heredity》2008,100(2):103-110
The extensive sequence variation in most surface antigens of Plasmodium falciparum is one of the major factors why clinical immunity to malaria develops only after repeated infections with the same species over several years. For some P. falciparum surface antigens, all observed alleles clearly fall into two allelic classes, with divergence between classes dwarfing divergence within classes. We discuss the ways in which such allelic dimorphism deviates from the expected shape of the genealogy of genes under either neutral evolution or standard balancing selection, and present a simple test, based on coalescent theory, to detect this deviation in samples of DNA sequences. We review previous hypotheses for the origin and evolution of allelic dimorphism in malarial antigens and discuss the difficulties of explaining the available data under these proposals. We conclude by offering several possible classes of explanations for allelic dimorphism, which are worthy of further theoretical and empirical exploration.  相似文献   

4.
A number of stage-specific antigens have been characterized for vaccine development against Plasmodium falciparum malaria. This study presents a comprehensive analysis of the sequence polymorphism in Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) in population samples from the eastern and western parts of India. This is the first study of its kind for the nearly full length PfAMA-1 gene from these regions in India. Our observations confirmed that sequence diversity of PfAMA-1 confines only to point mutations and shows 4-8% variation as compared to the prototypes. As opposed to the previous studies on PfAMA-1, our study revealed a greater degree of polymorphism in the Domain II region of PfAMA-1 protein, though signature for diversifying selection is seen throughout the gene. Our present investigation also indicates a very high degree of variation in the reported T- and B-cell epitopes of PfAMA-1. Few noteworthy and unique observations made in this study are the substitution of Cysteine residues responsible for the disulfide bond structure of the protein and the presence of premature termination after 595 amino acids in 3 of the 13 isolates under consideration. These crucial findings add new perspectives to the future of AMA-1 research and could have major implications in establishing AMA-1 as a vaccine candidate.  相似文献   

5.
The Plasmodium falciparum apical membrane antigen 1 (AMA1) is a leading candidate for a malaria vaccine. Here, within-population analyses of alleles from 50 Thai P. falciparum isolates yield significant evidence for balancing selection on polymorphisms within the disulfide-bonded domains I and III of the surface accessible ectodomain of AMA1, a result very similar to that seen previously in a Nigerian population. Studying the frequency of nucleotide polymorphisms in both populations shows that the between-population component of variance (F(ST)) is significantly lower in domains I and III compared to the intervening domain II and compared to 11 unlinked microsatellite loci. A nucleotide site-by-site analysis shows that sites with exceptionally high or low F(ST) values cluster significantly into serial runs, with four runs of low values in domain I and one in domain III. These runs may map the sequences that are consistently under the strongest balancing selection from naturally acquired immune responses.  相似文献   

6.
The usual course of infection by Plasmodium falciparum among adults who lack a history of exposure to endemic malaria is fulminant. The infection in adults living with hyper- to holoendemic malaria is chronic and benign. Naturally acquired immunity to falciparum malaria is the basis of this difference. Confusion surrounds an essential question regarding this process: What is its rate of onset? Opinions vary because of disagreement over the relationships between exposure to infection, antigenic polymorphism and naturally acquired immunity. In this review, Kevin Baird discusses these relationships against a backdrop of host age as a determinant of naturally acquired immunity to falciparum malaria.  相似文献   

7.
Plasmodium falciparum, the most virulent species of human malaria parasite, causes 1-3 million deaths per year. Because this parasite is susceptible to naturally acquired host immunity the main burden of diseases falls on young children. The mechanism of this immunity is still unclear. However, the parasite makes a considerable investment in the insertion of highly polymorphic antigens (parasite-infected-erythrocyte surface antigens, PIESA) on the infected erythrocyte surface, and these antigens are potentially important immune targets.  相似文献   

8.

Background

Endemic human pathogens are subject to strong immune selection, and interrogation of pathogen genome variation for signatures of balancing selection can identify important target antigens. Several major antigen genes in the malaria parasite Plasmodium falciparum have shown such signatures in polymorphism-versus-divergence indices (comparing with the chimpanzee parasite P. reichenowi), and in allele frequency based indices.

Methodology/Principal Findings

To compare methods for prospective identification of genes under balancing selection, 26 additional genes known or predicted to encode surface-exposed proteins of the invasive blood stage merozoite were first sequenced from a panel of 14 independent P. falciparum cultured lines and P. reichenowi. Six genes at the positive extremes of one or both of the Hudson-Kreitman-Aguade (HKA) and McDonald-Kreitman (MK) indices were identified. Allele frequency based analysis was then performed on a Gambian P. falciparum population sample for these six genes and three others as controls. Tajima''s D (TjD) index was most highly positive for the msp3/6-like PF10_0348 (TjD = 1.96) as well as the positive control ama1 antigen gene (TjD = 1.22). Across the genes there was a strong correlation between population TjD values and the relative HKA indices (whether derived from the population or the panel of cultured laboratory isolates), but no correlation with the MK indices.

Conclusions/Significance

Although few individual parasite genes show significant evidence of balancing selection, analysis of population genomic and comparative sequence data with the HKA and TjD indices should discriminate those that do, and thereby identify likely targets of immunity.  相似文献   

9.
Malaria vaccine development has so far been largely focused on antigens involved in parasite invasion pathways rather than on antigens associated with severe disease and naturally acquired immunity. Individuals repeatedly exposed to Plasmodium falciparum will eventually become immune to severe disease. Parasite-derived antigens expressed on the infected red blood cell (iRBC) surface are the main targets of protective immunity and can be explored as a rational alternative in development of an anti-malaria vaccine.  相似文献   

10.
Baum J  Thomas AW  Conway DJ 《Genetics》2003,163(4):1327-1336
Malaria parasite antigens involved in erythrocyte invasion are primary vaccine candidates. The erythrocyte-binding antigen 175K (EBA-175) of Plasmodium falciparum binds to glycophorin A on the human erythrocyte surface via an N-terminal cysteine-rich region (termed region II) and is a target of antibody responses. A survey of polymorphism in a malaria-endemic population shows that nucleotide alleles in eba-175 region II occur at more intermediate frequencies than expected under neutrality, but polymorphisms in the homologous domains of two closely related genes, eba-140 (encoding a second erythrocyte-binding protein) and psieba-165 (a putative pseudogene), show an opposite trend. McDonald-Kreitman tests employing interspecific comparison with the orthologous genes in P. reichenowi (a closely related parasite of chimpanzees) reveal a significant excess of nonsynonymous polymorphism in P. falciparum eba-175 but not in eba-140. An analysis of the Duffy-binding protein gene, encoding a major erythrocyte-binding antigen in the other common human malaria parasite P. vivax, also reveals a significant excess of nonsynonymous polymorphisms when compared with divergence from its ortholog in P. knowlesi (a closely related parasite of macaques). The results suggest that EBA-175 in P. falciparum and DBP in P. vivax are both under diversifying selection from acquired human immune responses.  相似文献   

11.
The discovery of polymorphism in the T cell determinants of the protein that covers the surface of malaria sporozoites, the circumsporozoite protein (CSP), may have a negative effect on the course of development of a sporozoite-derived anti-malaria vaccine. Comparison of CSP gene sequences from Plasmodium falciparum suggests, based on the lack of silent (i.e., synonymous) substitutions, that polymorphism is being biologically selected for in the field. Thus, variation in T cell determinant sequences may actually be a means of immune evasion. The central question addressed here is whether or not the natural polymorphisms found in three identified T cell determinants in the CSP gene of P. falciparum are immunologically significant with regard to T cell stimulation. In support of the immune evasion hypothesis, we show here that animals immunized with peptides based on one sequence (i.e., the 7G8 isolate) will not significantly respond when challenged with variant peptides based on other CSP sequences (i.e., the LE5 and We1 isolates). Polymorphism in T cell determinants thus indicates that infection with sporozoites will not necessarily boost immune (antibody help and/or proliferative) responses stimulated by prior infections or by a particular vaccine construct based on these determinants. The implications of these findings in regard to vaccine development are discussed.  相似文献   

12.
Polley SD  Conway DJ 《Genetics》2001,158(4):1505-1512
The surface-accessible ectodomain region of the Plasmodium falciparum apical membrane antigen 1 (AMA1) is a malaria vaccine candidate. The amino acid sequence may be under selection from naturally acquired immune responses, and previous analyses with a small number of allele sequences indicate a non-neutral pattern of nucleotide variation. To investigate whether there is selection to maintain polymorphism within a population, and to identify the parts of the ectodomain under strongest selection, a sample of 51 alleles from a single endemic population was studied. Analyses using Fu and Li's D and F tests, Tajima's D test, and the McDonald-Kreitman test (with the chimpanzee parasite P. reichenowi as outgroup) show significant departure from neutrality and indicate the selective maintenance of alleles within the population. There is also evidence of a very high recombination rate throughout the sequence, as estimated by the recombination parameter, C, and by the rapid decline in linkage disequilibrium with increasing nucleotide distance. Of the three domains (I-III) encoding structures determined by disulfide bonds, the evidence of selection is strongest for Domains I and III. We predict that these domains in particular are targets of naturally acquired protective immune responses in humans.  相似文献   

13.
We examined patterns and putative mechanisms of sequence diversification in the merozoite surface protein-2 (MSP-2) of Plasmodium falciparum, a major dimorphic malaria vaccine candidate antigen, by analyzing 448 msp-2 alleles from all continents. We describe several nucleotide replacements, insertion and deletion events, frameshift mutations, and proliferations of repeat units that generate the extraordinary diversity found in msp-2 alleles. We discuss the role of positive selection exerted by naturally acquired type- and variant-specific immunity in maintaining the observed levels of polymorphism and suggest that this is the most likely explanation for the significant excess of nonsynonymous nucleotide replacements found in dimorphic msp-2 domains. Hybrid sequences created by meiotic recombination between alleles of different dimorphic types were observed in few (3.1%) isolates, mostly from Africa. We found no evidence for an extremely ancient origin of allelic dimorphism at the msp-2 locus, predating P. falciparum speciation, in contrast with recent findings for other surface malarial antigens.  相似文献   

14.
New strategies are required to identify the most important targets of protective immunity in complex eukaryotic pathogens. Natural selection maintains allelic variation in some antigens of the malaria parasite Plasmodium falciparum. Analysis of allele frequency distributions could identify the loci under most intense selection. The merozoite surface protein 1 (Msp1) is the most-abundant surface component on the erythrocyte-invading stage of P. falciparum. Immunization with whole Msp1 has protected monkeys completely against homologous and partially against non-homologous parasite strains. The single-copy msp1 gene, of about 5 kilobases, has highly divergent alleles with stable frequencies in endemic populations. To identify the region of msp1 under strongest selection to maintain alleles within populations, we studied multiple intragenic sequence loci in populations in different regions of Africa and Southeast Asia. On both continents, the locus with the lowest inter-population variance in allele frequencies was block 2, indicating selection in this part of the gene. To test the hypothesis of immune selection, we undertook a large prospective longitudinal cohort study. This demonstrated that serum IgG antibodies against each of the two most frequent allelic types of block 2 of the protein were strongly associated with protection from P. falciparum malaria.  相似文献   

15.
We have investigated whether naturally induced immunity to Plasmodium falciparum thrombospondin related adhesive protein contributes to protection against malaria in humans. We have carried out a case control study in children living in an endemic region of West Africa to reveal associations between PfTRAP seroprevalence and the risk of cerebral malaria. Sera collected from the case and control groups were analysed by ELISA to compare their serum reactivity against PfTRAP, the circumsporozoite protein and the merozoite surface protein 1. Children with uncomplicated malaria had a significantly higher PfTRAP seroprevalence when compared to children with cerebral malaria. The risk of developing cerebral malaria appeared to depend on the reciprocal relationship between sporozoite inoculation rates and humoral immunity against PfTRAP. Our results suggest that naturally induced humoral immunity against PfTRAP contributes to the development of protection against severe malaria. Experimentally induced immunity against TRAP in different rodent models has consistently proven to elicit a high degree of protection against malaria. This together with the functional properties of TRAP and data describing CD4 and CD8 epitopes for PfTRAP indicate that this molecule could increase the protective efficiency of available sporozoite malaria vaccines.  相似文献   

16.
Polymorphism of the TRAP gene of Plasmodium falciparum   总被引:13,自引:0,他引:13  
Natural sequence variation of the thrombospondin related anonymous protein (TRAP) gene of Plasmodium falciparum has been investigated by DNA analysis following the polymerase chain reaction amplification, and this shows the gene to be highly polymorphic. The region containing the sequence motif Trp-Ser-Pro-Cys-Ser-Val-Thr-Cys-Gly (WSPCSVTCG), common to TRAP, the circumsporozoite protein, properdin, and thrombospondin, was invariant. Elsewhere in the molecule, over 50 amino acid substitutions are described including the insertion of an in-frame, small-variable tandemly repeating motif between amino acid residues 352 and 353. Only one silent mutation was observed. Most nucleotide changes that occur in the first two codon positions result in conservative amino acid changes. Restriction fragment length polymorphism (RFLP) analysis was used to examine inheritance of TRAP in a cross between the HB3 and 3D7 clones of P. falciparum. Out of nine progeny examined, four possessed the HB3 gene and five the 3D7 gene. The TRAP gene hybridized to chromosome 13. Previous work has shown that a subtelomeric region of chromosome 13 from the 3D7 parent (marked by the HRP-III gene) was favoured strongly in this cross. The TRAP gene, however, is over 1 Mb away from this subtelomeric region and exhibits no such linkage because of chromosome crossovers. Five geographically separate isolates shared the same TRAP sequence as well as the same variant of the Th2R/Th3R region from the circumsporozoite protein. The correlation between independent markers in these isolates suggests that they have a common provenance.  相似文献   

17.
The antibody response to Plasmodium falciparum parasites of naturally infected population is critical to elucidate the role of polymorphic alleles in malaria. Thus, we evaluated the impact of antigenic diversity of repetitive and family dimorphic domains of the merozoite surface protein 2 (MSP-2) on immune response of 96 individuals living in Peixoto de Azevedo (MT-Brazil), by ELISA using recombinant MSP-2 proteins. The majority of these individuals were carrying FC27-type infections. IgG antibody responses were predominantly directed to FC27 parasites and were correlated to the extension of polymorphism presented by each MSP-2 region. This finding demonstrated the impact of the genetic polymorphism on antibody response and therefore, its importance on malaria vaccine efficacy.  相似文献   

18.
Malaria is a vector-borne infectious disease caused by infection with eukaryotic pathogens termed Plasmodium. Epidemiological hallmarks of Plasmodium falciparum malaria are continuous re-infections, over which time the human host may experience several clinical malaria episodes, slow acquisition of partial protection against infection, and its partial decay upon migration away from endemic regions. To overcome the exposure-dependence of naturally acquired immunity and rapidly elicit robust long-term protection are ultimate goals of malaria vaccine development. However, cellular and molecular correlates of naturally acquired immunity against either parasite infection or malarial disease remain elusive. Sero-epidemiological studies consistently suggest that acquired immunity is primarily directed against the asexual blood stages. Here, we review available data on the relationship between immune responses against the Anopheles mosquito-transmitted sporozoite and exo-erythrocytic liver stages and the incidence of malaria. We discuss current limitations and research opportunities, including the identification of additional sporozoite antigens and the use of systematic immune profiling and functional studies in longitudinal cohorts to look for pre-erythrocytic signatures of naturally acquired immunity.  相似文献   

19.
Decoding the language of var genes and Plasmodium falciparum sequestration   总被引:3,自引:0,他引:3  
Sequestration and rosetting are key determinants of Plasmodium falciparum pathogenesis. They are mediated by a large family of variant proteins called P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 proteins are multispecific binding receptors that are transported to parasite-induced, 'knob-like' binding structures at the erythrocyte surface. To evade immunity and extend infections, parasites clonally vary their expressed PfEMP1. Thus, PfEMP1 are functionally selected for binding while immune selection acts to diversify the family. Here, we describe a new way to analyse PfEMP1 sequence that provides insight into domain function and protein architecture with potential implications for malaria disease.  相似文献   

20.
Malaria kills a million people annually. Understanding the relationship between a causative parasite, Plasmodium falciparum, and the mosquito vector might suggest novel prevention approaches. We created and transformed into Drosophila two genes encoding, thrombospondin‐related adhesive protein (TRAP) and circumsporozoite protein (CSP), found on the cell surface of Plasmodium sporozoites. To understand a model insect's response, we induced these proteins separately and together, performing whole genome microarray analysis measuring gene expression changes. Gene ontology classification of responding genes reveals that TRAP and CSP strongly and differentially influence Drosophila genes involved with cell motility and gene regulation, respectively; however, the most striking effects are on the immune system. While immune‐related genes are but modestly elevated compared with responses to sepsis, there is a marked repression of the Toll pathway. This suggests: (1) how Plasmodium infection of the mosquito might use TRAP and CSP to modulate the host insect's physiology to promote sporozoite survival and transmission to man and (2) that approaches to elevate expression of the mosquito's Toll pathway might lead to novel methods of malaria prevention. genesis 47:196–203, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号