首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse embryo cells infected with the 3049 strain of polyoma virus contain several fold more virus-specific, polyadenylated RNA beginning between 4 and 8 hours after the onset of viral DNA synthesis than do cells infected with wild-type virus (lpS). Following infection with either virus strain, there is an identical small but significant enhancement of the level of total polyadenylated RNA measured by binding of 125I-labeled RNA to poly(dT)cellulose. The polyadenylation of “early” virus-specific RNA is inhibited 85–90% by cordycepin resulting in an “early” RNA preparation which competes fully with polyadenylated “early” virus-specific RNA in the ternary complex assay. Utilizing the nonpolyadenylated “early” RNA, competition hybridization demonstrated that approximately 78% of the enlarged pool of “late” 3049 polyadenylated RNA and 72% of the “late” lpS pool consisted of sequences unique to the “late” period. No significant difference in the rate of decay of 3049 and lpS-specific, “late” polyadenylated RNA following actinomycin D block was found. Infection by either strain of polyoma virus did not alter the rate of decay of total polyadenylated RNA.  相似文献   

2.
3.
4.
5.
6.
The ability of a temperature-sensitive (ts) mutant of reovirus, ts261-b, to synthesize virus-specific RNAs and proteins during infection at the nonpermissive temperature (37 degrees C) was investigated. The relative amounts of the mutant virus-specific single-stranded (ss) RNA''s and double-stranded (ds) RNA''s synthesized in cells at 37 degrees C were 20 to 25% as much as those synthesized in the wild-type virus-infected cells. The 10 segments of the mutant ds RNAs and the three size classes of the ss RNAs were synthesized in the usual proportions. The methylation of the mutant viral mRNA''s (ss RNAs) was not blocked at 37 degrees C in infected cells. A striking temperature-sensitive restricted function of the ts261-b mutant was expressed in the synthesis of the viral proteins. This study, which uses an in vitro protein-synthesizing system reconstituted with an endogenous polysomal fraction and a postribosomal supernatant from reovirus-infected cells, has demonstrated that the endogenous polysomes obtained from ts261-b mutant-infected cells at 37 degrees C are not active in the synthesis of the viral polypeptides of known molecular weights, and the amounts of the mutant viral polypeptides synthesized in vitro by these polysomes are 5 to 9% of those synthesized by the corresponding fraction from wild-type-infected cells. The impaired protein-synthesizing capacity of the mutant virus-specific polysomes can be restored during maintenance of the infected cells at 30 degrees C after shift-down from 37 degrees C. The in vitro synthesis of viral polypeptides of known size by the active endogenous polysomes derived from cells infected at the permissive temperature is accelerated by the addition of the postribosomal supernatant obtained from cells infected at the permissive temperature. The postribosomal supernatant from mutant-infected cells at 37 degrees C did not have a stimulatory effect, but rather, it inhibited in vitro viral protein synthesis.  相似文献   

7.
The synthesis and processing of virus-specific precursor polypeptides in NIH/3T3 cells infected at the permissive temperature (31 degrees C) with temperature-sensitive (ts) mutants of Rauscher murine leukemia virus was studied in pulse-chase experiments at the permissive and nonpermissive (39 degrees C) temperatures. The newly synthesized virus-specific polypeptides were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera against Rauscher murine leukemia virus proteins. In cells infected with ts mutants defective in early replication steps (the early mutants ts17 and ts29), and ts mutants defective in postintegration steps (the late mutants ts25 and ts26), the processing of the primary gag gene product was impaired at the nonpermissive temperature. gag-pr75 of all four mutants was converted into gag-pr65; however, gag-pr65 accumulated at the nonpermissive temperature, and the main internal virion polypeptide p30 was not formed. Therefore, the proteolytic cleavage is blocked beyond gag-pr65. Concomitantly, the formation of the env gene-related polypeptide p12(E) of all four mutants was blocked at the restrictive temperature. In contrast, cells infected with the late mutant ts28, which produced noninfectious virions at 39 degrees C, showed a normal turnover of the gag and env precursor polypeptides.  相似文献   

8.
9.
The virus-specific RNA in two independently derived clones of polyoma virus-transformed hamster cells was studied by hybridizing labeled RNA, with excess purified polyoma DNA, immoblized on filters. In one clone (PyBHK1), less than 25% of the total labeled virus-specific RNA was found in the cytoplasm, irrespective of the labeling time. In the other clone (PyBHK2), it was estimated that 39% of the total virus-specific RNA was present inthe cytoplasm after labeling for 3 h. Both the proportion of radioactive label incorporated into virus-specific RNA and the sedimentation pattern of total virus-specific RNA differed markedly between PyBHK and PyBHK2. Most of the virus-specific RNA of PyBHK1 sedimented in the range 25S-35S, whereas a prominent 18S component was present in PyBHK2. Most of the cytoplasmic virus-specific RNA in both clones sedimented at 18S-19S. The sedimentation patterns of virus-specific RNA from whole cells and from washed nuclei of PyBHK1 were closely similar: it was estimated from sedimentation analysis in dimethyl sulfoxide that the molecular weight of 50% of this RNA was within the range 1.1 X10(6) to 2.9 X 10(6). These results, demonstrating the accumulation of virus-specific RNA within the nucleus in at least one virus-transformed cell line, indicate that the large virus-specific RNA previously described in the nuclei of transformed cells may not have represented precursors of virus-specific mRNA.  相似文献   

10.
Ts20 is a temperature-sensitive mutant cell line derived from BALB/3T3 cells that is blocked at a step in DNA synthesis involving chain elongation. Following a shift from 33 degrees to 39 degrees C, mutant cells lost ability to grow or form colonies. When mutant cells were infected with polyomavirus, both cell and virus DNA synthesis were inhibited at the restrictive temperature of 39 degrees C. When cell extracts from wild-type cells were added in vitro to lysed infected mutant cells that had been incubated in vivo at 39 degrees C for expression of the mutation, cell DNA synthesis was increased 3-fold (similar to the effect in uninfected mutant cells), whereas virus DNA synthesis was increased only 60%. With harsher lysis conditions, the effect of added extract on virus DNA synthesis was greater, although baseline DNA synthesis (prior to addition of extracts) was much lower. Analysis by alkaline sucrose gradients showed that the addition of cell extract converted small cellular DNA molecules into larger ones, while it increased the synthesis of small virus DNA molecules rather than completed genomes. Analysis of cytosol extracts (in which the activity stimulating DNA synthesis resides) showed that DNA topo-isomerase I activity was more heat-labile when assayed in mutant extracts compared to wild-type extracts. In contrast, cytosol DNA polymerase activity was equally heat-labile in mutant and wild-type extract. This suggested the factor in extract was likely associated with the activity of DNA topo-isomerase I. Analysis of virus DNA synthesized in vitro in restricted mutant cells by gel electrophoresis and fluorography showed an accumulation of topo-isomers migrating between form I and II. These topo-isomers, thought to be a manifestation of the ts defect, did not disappear when extract from wild-type cells was added back in vitro or when mutant cells were shifted back to permissive temperature prior to lysis for in vitro synthesis. The results indicate that polyoma DNA synthesis and cell DNA synthesis differ in their response to the mutant gene product in ts20, although both are inhibited at a step early in DNA chain elongation that may involve DNA topo-isomerase I.  相似文献   

11.
Early polyoma (Py) virus-specific RNA synthesis was examined in cells infected with different concentrations of Py-virus. The effect of various multiplicities of infection (m.o.i.) on the rate of Py-RNA synthesis is different at 30 hr as compared to 65 hr. Thirty hours after infection at 27degrees, in the presence of 5-fluoro-2-deoxyuridine (FdU), an increase in input multiplicity was not associated with a quantitatively commensurate increase in the amount of virus-specific RNA synthesized. At 65 hr, the amount of viral RNA synthesized was roughly proportional to the number of infecting virus particles.  相似文献   

12.
We mapped polyoma virus-specific mRNAs isolated from productively infected mouse 3T6 cells on the viral genome by analyzing nuclease S1-resistant RNA-DNA hybrids. The polyoma early mRNAs, which code for the three T antigens, have several 5' ends near 73 map units (m.u.). During the late phase of infection an additional 5' end is found near 71 m.u. All of the major early mRNAs have common 3' ends at 26.01 m.u. There is a minor species of early mRNA with a 3' end at 99.05 m.u. There are two proximal and two distal splice junctions in the early region which are used to generate three different spliced early mRNAs. There are three late mRNAs encoding the three virion proteins, VP1, VP2, and VP3. The late mRNAs have common 3' ends at 25.34 m.u. The late mRNAs have heterogeneous 5' leader sequences derived from the region between 65.53 and 68.42 m.u. The leader sequences are joined to the bodies of the messages coding for VP2, VP3, and VP1 at 66.59, 59.62, and 48.57 m.u., respectively. These results confirm and extend previous analyses of the fine structure of polyoma mRNAs.  相似文献   

13.
14.
Construction of the genetic map of the polyoma genome.   总被引:37,自引:26,他引:11       下载免费PDF全文
Seven early mutants, three late mutants, and one plaque morphology mutant of polyoma have been mapped by marker rescue using wild-type restriction endonuclease fragments. The early mutants map between 1.0 and 26.4 units from the Eco RI site, a region previously shown to correspond to the 3'-OH termainal half of "early" RNA (Kamen et al., 1974). The late mutants as well as the plaque morphology mutant map between 26.6 and 45.4 map units, a region previously shown to correspond to the 3'-OH terminal half of "late" RNA (Kamen et al., 1974). Analysis of the genotype of rescued virus demonstrated that the modification of the mutant DNA during marker rescue was limited to the region of the genome covered by the wild-type restriction endonuclease fragment tested.  相似文献   

15.
In mouse cells transformed with the ts-a mutant of polyoma virus (ts-a-3T3), only low amounts of the virus-specific T antigen were synthesized at high temperature (39 C). After a shift-down to the permissive temperature (31 C), these cells exhibited the same level of T-antigen production as wild-type polyoma transformants. The T antigen produced by ts-a-transformed cells was inactivated at 39 C in vitro at a faster rate than that produced by wild-type-transformed cells. These observations indicate that T antigen is, or includes, a virus-coded peptide.  相似文献   

16.
Fourteen temperature-sensitive mutants of human adenovirus type2, which differed in their plaquing efficiencies at at the permissive and nonpermissive temperatures by 4 to 5 orders of magnitude, were isolated. These mutants, which could be assigned to seven complementation groups, were tested for their capacity to synthesize adenovirus DNA at the nonpermissive temperature. Three mutants in three different complementation groups proved deficient in viral DNA synthesis. The DNA-negative mutant H2ts206 complemented the DNA-negative mutants H5ts36 and H5ts125, whereas mutant H2ts201 complemented H5ts36 only. Among the DNA-negative mutants, H2ts206 synthesized the smallest amount of viral DNA at the nonpermissive temperature (39.5 C). Data obtained in temperature shift experiments indicated that a very early function was involved in temperature sensitivity. In keeping with this observation, early virus-specific mRNA was not detected in cells infected with H2ts206 and maintained at 39.5 C. Prolonged (52 h) incubation of cells infected with H2ts206 at the nonpermissive temperature led to the synthesis of a high-molecular-weight form of viral DNA.  相似文献   

17.
Sindbis virus-specific polypeptides were synthesized in lysates of rabbit reticulocytes in response to added 26 S or 49 S RNA. Sindbis 26 S RNA was translated into as many as three polypeptides which co-migrate in acrylamide gels with proteins found in infected cells.Wild type 26 S RNA was translated primarily into two polypeptides, which appear to be the Sindbis nucleocapsid protein (mol. wt 30,000) and the precursor of the two glycoproteins of the virion (mol. wt 100,000). A larger polypeptide (mol. wt 130,000) was synthesized in response to ts2 26 S RNA, a species of RNA which was isolated from cells infected with the ts2 mutant of Sindbis virus. This large polypeptide is apparently the protein which accumulates in cells infected with the mutant virus and which is thought to be a precursor of all three viral structural proteins.These results support the hypothesis that 26 S RNA is the messenger for the three structural proteins of the virion and that the RNA codes for one large polypeptide precursor. The precursor may then be cleaved at a specific site to yield the nucleocapsid protein and a second polypeptide which, in infected cells, is cleaved in a series of steps to yield the two glycoproteins of the virion.Sindbis 49 S RNA was translated into eight or nine polypeptides ranging from 60,000 to 180,000 molecular weights. The viral structural proteins, as such, were not synthesized in response to the added 49 S RNA.  相似文献   

18.
Early virus-specific RNA synthesized in KB cells infected with adenovirus type 7 and virus-specific RNA synthesized in rat embryo cells (71JY1-2) transformed by the adenovirus type 7 HindIII-I.J fragment (left-hand 8.1% of the viral genome) have been mapped on the viral genome. About 25% of the viral genome, four discrete regions, two on each strand of the viral genome, are expressed as "early" mRNA. Almost similar regions in the left-hand 8.1% of the viral genome are transcribed both in KB cells at early times after infection and in 71JY1-2 cells.  相似文献   

19.
20.
The temperature-sensitive defects of virus mutants isolated from L cells persistently infected with Newcastle disease virus (NDV) were analyzed. Genetic grouping of the mutants by complementation tests was attempted by using several different methods, including yield analysis, RNA synthesis, and heterozygote formation at 42 to 43 C, the nonpermissive temperature. In each case, specific interference prevented detection of complementation. This interference was shown to occur prior to or at the level of virus RNA synthesis. Temperature-shift experiments with five different NDV(pi) clones showed that virus replication begun at 37 C could not be completed at the nonpermissive temperature. The activity of the NDV-specific RNA-dependent RNA polymerase in the cytoplasm of infected chicken embryo cells was not stable and could not be demonstrated directly. However, indirect measurement of RNA polymerase activity at the nonpermissive temperature was accomplished by studying the kinetics of virus-specific RNA synthesis in infected cells after temperature shift. Two types of response were obtained: with three NDV(pi) clones, virus-specific RNA synthesis ceased immediately upon transfer of infected cells to 42 to 43 C, whereas in cells infected with two other NDV(pi) clones, RNA synthesis continued for several hours at this temperature. These results suggested that there may be two types of ts defects in NDV(pi), both associated with virus-specific RNA polymerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号