首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arrival of the nerve impulse to the nerve endings leads to a series of events involving the entry of sodium and the exit of potassium. Restoration of ionic equilibria of sodium and potassium through the membrane is carried out by the sodium/potassium pump, that is the enzyme Na+,K+-ATPase. This is a particle-bound enzyme that concentrates in the nerve ending or synaptosomal membranes. The activity of Na+,K+-ATPase is essential for the maintenance of numerous reactions, as demonstrated in the isolated synaptosomes. This lends interest to the knowledge of the possible regulatory mechanisms of Na+,K+-ATPase activity in the synaptic region. The aim of this review is to summarize the results obtained in the author's laboratory, that refer to the effect of neurotransmitters and endogenous substances on Na+,K+-ATPase activity. Mention is also made of results in the field obtained in other laboratories. Evidence showing that brain Na+,K+-ATPase activity may be modified by certain neurotransmitters and insulin have been presented. The type of change produced by noradrenaline, dopamine, and serotonin on synaptosomal membrane Na+,K+-ATPase was found to depend on the presence or absence of a soluble brain fraction. The soluble brain fraction itself was able to stimulate or inhibit the enzyme, an effect that was dependent in turn on the time elapsed between preparation and use of the fraction. The filtration of soluble brain fraction through Sephadex G-50 allowed the separation of two active subfractions: peaks I and II. Peak I increased Na+,K+- and Mg2+-ATPases, and peak II inhibited Na+,K+-ATPase. Other membrane enzymes such as acetylcholinesterase and 5′-nucleotidase were unchanged by peaks I or II. In normotensive anesthetized rats, water and sodium excretion were not modified by peak I but were increased by peak II, thus resembling ouabain effects.3H-ouabain binding was unchanged by peak I but decreased by peak II in some areas of the CNS assayed by quantitative autoradiography and in synaptosomal membranes assayed by a filtration technique. The effects of peak I and II on Na+,K+-ATPase were reversed by catecholamines. The extent of Na+,K+-ATPase inhibition by peak II was dependent on K+ concentration, thus suggesting an interference with the K+ site of the enzyme. Peak II was able to induce the release of neurotransmitter stored in the synaptic vesicles in a way similar to ouabain. Taking into account that peak II inhibits only Na+,K+-ATPase, increases diuresis and natriuresis, blocks high affinity3H-ouabain binding, and induces neurotransmitter release, it is suggested that it contains an ouabain-like substance.  相似文献   

2.
Previous studies have shown that hypoxia induces nitric oxide synthase-mediated generation of nitric oxide free radicals leading to peroxynitrite production. The present study tests the hypothesis that hypoxia results in NO-mediated modification of Na+, K+-ATPase in the fetal brain. Studies were conducted in guinea pig fetuses of 58-days gestation. The mothers were exposed to FiO2 of 0.07% for 1 hour. Brain tissue hypoxia in the fetus was confirmed biochemically by decreased ATP and phosphocreatine levels. P2 membrane fractions were prepared from normoxic and hypoxic fetuses and divided into untreated and treated groups. The membranes were treated with 0.5 mM peroxynitrite at pH 7.6. The Na+, K+-ATPase activity was determined at 37°C for five minutes in a medium containing 100 mM NaCl, 20 mM KCl, 6.0 mM MgCl2, 50 mM Tris HCl buffer pH 7.4, 3.0 mM ATP with or without 10 mM ouabain. Ouabain sensitive activity was referred to as Na+, K+-ATPase activity. Following peroxynitrite exposure, the activity of Na+, K+-ATPase in guinea pig brain was reduced by 36% in normoxic membranes and further 29% in hypoxic membranes. Enzyme kinetics was determined at varying concentrations of ATP (0.5 mM-2.0 mM). The results indicate that peroxynitrite treatment alters the affinity of the active site of Na+, K+-ATPase for ATP and decreases the Vmax by 35% in hypoxic membranes. When compared to untreated normoxic membranes Vmax decreases by 35.6% in treated normoxic membranes and further to 52% in treated hypoxic membranes. The data show that peroxynitrite treatment induces modification of Na+, K+-ATPase. The results demonstrate that peroxynitrite decreased activity of Na+, K+-ATPase enzyme by altering the active sites as well as the microenvironment of the enzyme. We propose that nitric oxide synthase-mediated formation of peroxynitrite during hypoxia is a potential mechanism of hypoxia-induced decrease in Na+, K+-ATPase activity.  相似文献   

3.
The structure-activity relationships of the genin moieties of digitalis glycosides are commonly elucidated by determining the inhibitory potency of a variety of genins toward the plasma membrane Na+, K+-ATPase; qualitatively these relationships appear to be fairly independent of the specific Na+, K+-ATPase preparation utilized for the analysis. To determine whether this is the case with regard to the sugar moieties of glycosides, the inhibitory effects of 12 monoglycosides of digitoxigenin toward four Na+, K+-ATPase preparations of different origin were measured. It was found that while recognition of the major structural determinants of sugar activity appeared to be independent of enzyme source, recognition of the minor structural determinants of activity showed some source dependence. It was also observed that the intrinsic sensitivity to sugar potentiation may be source dependent and unrelated to intrinsic sensitivity to inhibition by digitoxigenin. These observations are compatible with a model of the Na+, K+-ATPase sugar binding site(s) in which intrinsic sensitivity to sugar attachment as well as recognition characteristics (for sugar structural features) both determine the extent to which a sugar moiety may contribute to the activity of monoglycosides. Further, in these studies one of the Na+, K+-ATPase preparations employed was obtained from rat brain, a tissue known to contain a mixture of ouabain sensitive and insensitive isoforms. We have observed that the rigorous purification techniques employed appear to have selectively removed from or denatured the less ouabain sensitive al isoform found in this enzyme preparation.  相似文献   

4.
In previous papers, the isolation of brain soluble fractions able to modify neuronal Na+, K+-ATPase activity has been described. One of those fractions-peak I-stimulates membrane Na+, K+-ATPase while another-peak II-inhibits this enzyme activity, and has other ouabain-like properties. In the present study, synaptosomal membrane Na+, K+-ATPase was analyzed under several experimental conditions, using ATP orp-nitrophenylphosphate (p-NPP) as substrate, in the absence and presence of cerebral cortex peak II. Peak II inhibited K+-p-NPPase activity in a concentration dependent manner. Double reciprocal plots indicated that peak II uncompetitively inhibits K+-p-NPPase activity regarding substrate, Mg2+ and K+ concentration. Peak II failed to block the known K+-p-NPPase stimulation caused by ATP plus Na+. At various K+ concentrations, percentage K+-p-NPPase inhibition by peak II was similar regardless of the ATP plus Na+ presence, indicating lack of correlation with enzyme phosphorylation. Na+, K+-ATPase activity was decreased by peak II depending on K+ concentration. It is postulated that the inhibitory factor(s) present in peak II interfere(s) with enzyme activation by K+.  相似文献   

5.
Application of single transient forebrain ischemia (ISC) in adult Wistar rats, lasting 2 or 10 min, caused inhibition of Na+,K+-ATPase activity in cytoplasmic membrane fractions of hippocampus and cerebral cortex immediately after the event. In the 2-min ISC group followed by 60 min of reperfusion, the enzyme inhibition was maintained in the cortex, while there was an increase in hippocampal enzyme activity; both effects were over 1 day after the event. However, in the 10-min ISC group enzyme inhibition had been maintained for 7 days in both cerebral structures. Interestingly, ischemic preconditioning (2-min plus 10-min ISC, with a 24-hour interval in between) prevented the inhibitory effect of ischemia/reperfusion on Na+,K+-ATPase activity observed either after a single insult of 2 min or 10 min ischemia. We suggest that the maintenance of Na+,K+-ATPase activity afforded by preconditioning be related to cellular neuroprotection.  相似文献   

6.
We have previously shown that peptide neurotensin inhibits cerebral cortex synaptosomal membrane Na+, K+-ATPase, an effect fully prevented by blockade of neurotensin NT1 receptor by antagonist SR 48692. The work was extended to analyze neurotensin effect on Na+, K+-ATPase activity present in other synaptosomal membranes and in CNS myelin and mitochondrial fractions. Results indicated that, besides inhibiting cerebral cortex synaptosomal membrane Na+, K+-ATPase, neurotensin likewise decreased enzyme activity in homologous striatal membranes as well as in a commercial preparation obtained from porcine cerebral cortex. However, the peptide failed to alter either Na+, K+-ATPase activity in cerebellar synaptosomal and myelin membranes or ATPase activity in mitochondrial preparations. Whenever an effect was recorded with the peptide, it was blocked by antagonist SR 48692, indicating the involvement of the high affinity neurotensin receptor (NT1), as well as supporting the contention that, through inhibition of ion transport at synaptic membrane level, neurotensin plays a regulatory role in neurotransmission.  相似文献   

7.
The objective of the present study was to investigate the effects of preincubation of hippocampus homogenates in the presence of homocysteine or methionine on Na+, K+-ATPase and Mg2+-ATPase activities in synaptic membranes of rats. Homocysteine significantly inhibited Na+, K+-ATPase activity, whereas methionine had no effect. Mg2+-ATPase activity was not altered by the metabolites. We also evaluated the effect of incubating glutathione, cysteine, dithiothreitol, trolox, superoxide dismutase and GM1 ganglioside alone or incubation with homocysteine on Na+, K+-ATPase activity. Tested compounds did not alter Na+, K+-ATPase and Mg2+-ATPase activities, but except for trolox, prevented the inhibitory effect of homocysteine on Na+, K+-ATPase activity. These results suggest that inhibition of this enzyme activity by homocysteine is possibly mediated by free radicals and may contribute to the neurological dysfunction found in homocystinuric patients.  相似文献   

8.
In the present study we evaluated the effect of acute homocysteine (Hcy) administration on Na+,K+-ATPase activity, as well as on some parameters of oxidative stress such as total radical-trapping antioxidant potential (TRAP) and on activities of antioxidant enzymes catalase (CAT), superoxide dismutase and glutathione peroxidase in rat hippocampus. Results showed that Hcy significantly decreased TRAP, Na+,K+-ATPase and CAT activities, without affecting the activities of superoxide dismutase and glutathione peroxidase. We also verified the effect of chronic pretreatment with vitamins E and C on the reduction of TRAP, Na+,K+-ATPase and CAT activities caused by Hcy. Vitamins E and C per se did not alter these parameters, but prevented the reduction of TRAP, Na+,K+-ATPase and CAT activities caused by Hcy. Our results indicate that oxidative stress is probably involved in the pathogenesis of homocystinuria and that reduction of Na+,K+-ATPase activity may be related to the neuronal dysfunction found in homocystinuric patients.  相似文献   

9.
The effect of a model of depression using female rats on Na+, K+-ATPase activity in hippocampal synaptic plasma membranes was studied. In addition, the effect of further chronic treatment with fluoxetine on this enzyme activity was verified. Sweet food consumption was measured to evaluate the efficacy of this model in inducing a state of reduced response to rewarding stimili. After 40 days of mild stress, a reduction in sweet food ingestion was observed. Reduction of hippocampal Na+, K+-ATPase activity was also observed. Treatment with fluoxetine increased this enzyme activity and reversed the effect of stress. Chronic fluoxetine decreased the ingestion of sweet food in both groups. This result is in agreement with suggestions that reduction of Na+, K+-ATPase activity is a caracteristic of depressive disorders. Fluoxetine reversed this effect. Therefore it is possible that altered Na+, K+-ATPase activity may be involved in the pathophysiology of depression in patients.  相似文献   

10.
Na+,K+-ATPase and Mg2+-ATPase activities were determined in the synaptic plasma membranes from hippocampus of rats subjected to chronic and acute proline administration. Na+,K+-ATPase activity was significantly reduced in chronic and acute treatment by 33% and 40%, respectively. Mg2+-ATPase activity was not altered by any treatment. In another set of experiments, synaptic plasma membranes were prepared from hippocampus and incubated with proline or glutamate at final concentrations ranging from 0.2 to 2.0 mM. Na+,K+-ATPase, but not Mg2+-ATPase was inhibited (30%) by the two amino acids. In addition, competition between proline and glutamate for the enzyme activity was observed, suggesting a common binding site for these amino acids. Considering that Na+,K+-ATPase activity is critical for normal brain function, the results of the present study showing a marked inhibition of this enzyme by proline may be associated with the neurological dysfunction found in patients affected by type II hyperprolinemia.  相似文献   

11.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

12.
Hyperhomocysteinemia occurs in homocystinuria, an inherited metabolic disease clinically characterized by thromboembolic episodes and a variable degree of neurological dysfunction whose pathophysiology is poorly known. In this study, we induced elevated levels of homocysteine (Hcy) in blood (500 M), comparable to those of human homocystinuria, and in brain (60 nmol/g wet tissue) of young rats by injecting subcutaneously homocysteine (0.3-0.6 mol/g of body weight) twice a day at 8-hr intervals from the 6th to the 28th postpartum day. Controls received saline in the same volumes. Na+,K+-ATPase and Mg2+-ATPase activities were determined in the hippocampus of treated Hcy- and saline-treated rats. Chronic administration of Hcy significantly decreased (40%) Na+,K+-ATPase activity but did not alter Mg2+-ATPase activity. Considering that Na+,K+-ATPase plays a crucial role in the central nervous system, our results suggest that the brain dysfunction found in homocystinuria may be related to the reduction of brain Na+,K+-ATPase activity.  相似文献   

13.
Rat C6 glioma cells were cultured for 4 days in MEM medium supplemented with 10% bovine serum and Na+,K+-ATPase activity was determined in homogenates of harvested cells. Approximately 50% of enzyme activity was attained at 1.5 mM K+ and the maximum (2.76±0.13 mol Pi/h/mg protein) at 5 mM K+. The specific activity of Na+,K+-ATPase was not influenced by freezing the homogenates or cell suspensions before the enzyme assay. Ten minutes' exposure of glioma cells to 10–4 or 10–5 M noradrenaline (NA) remained without any effect on NA+,K+-ATPase activity. Neither did the presence of NA in the incubation medium, during the enzyme assay, influence the enzyme activity. The nonresponsiveness of Na+,K+-ATPase of C6 glioma cells to NA is consistent with the assumption that (+) form of the enzyme may be preferentially sensitive to noradrenaline. Na+,K+-ATPase was inhibited in a dose-dependent manner by vanadate and 50% inhibition was achieved at 2×10–7 M concentration. In spite of the fact that Na+,K+-ATPase of glioma cells was not responsive to NA, the latter could at least partially reverse vanadate-induced inhibition of the enzyme. Although the present results concern transformed glial cells, they suggest the possibility that inhibition of glial Na+,K+-ATPase may contribute to the previously reported inhibition by vanadate of Na+,K+-ATPase of the whole brain tissue.  相似文献   

14.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

15.
In different species and tissues, a great variety of hormones modulate Na+,K+-ATPase activity in a short-term fashion. Such regulation involves the activation of distinct intracellular signaling networks that are often hormone- and tissue-specific. This minireview focuses on our own experimental observations obtained by studying the regulation of the rodent proximal tubule Na+,K+-ATPase. We discuss evidence that hormones responsible for regulating kidney proximal tubule sodium reabsorption may not affect the intrinsic catalytic activity of the Na+,K+-ATPase, but rather the number of active units within the plasma membrane due to shuttling Na+,K+-ATPase molecules between intracellular compartments and the plasma membrane. These processes are mediated by different isoforms of protein kinase C and depend largely on variations in intracellular sodium concentrations.  相似文献   

16.
We have already described the separation of two brain soluble fractions by Sephadex G-50, one of which stimulates (peak I) and the other inhibits (peak II) Na+, K+-ATPase and K+-p-nitrophenylphosphatase (K+-p-NPPase) activities. Here we examine the features of synaptosomal membrane p-NPPase activity in the presence and absence of brain peak I. It was observed that stimulation of Mg2+, K+-p-NPPase activity by peak I was concentration dependent, The ability of peak I to stimulate p-NPPase activity was lost by heat treatment followed by brief centrifugation. Pure serum albumin also stimulated enzyme activity. K+-p-NPPase stimulation by peak I proved dependent on K+ concentration but independent of Mg2+ and substrate p-nitrophenylphosphate concentrations. Since our determinations were performed in a non-phosphorylating condition reflecting the Na+, K+-ATPase Na+ site, it is suggested that peak I may stimulate the Na+-dependent enzyme phosphorylation known to take place from the internal cytoplasmic side.  相似文献   

17.
We have previously reported the isolation by gel filtration and anionic exchange HPLC of two brain Na+, K+-ATPase inhibitors, II-A and II-E, and kinetics of enzyme interaction with the latter. In the present study we evaluated the kinetics of synaptosomal membrane Na+, K+-ATPase with II-A and found that inhibitory activity was independent of ATP (2–8 mM), Na+ (3.1–100 mM), or K+ (2.5–40 mM) concentration. Hanes-Woolf plots showed that II-A decreases Vmax in all cases; KM value decreased for ATP but remained unaltered for Na+ and K+, indicating respectively uncompetitive and noncompetitive interaction. However, II-A became a stimulator at 0.3 mM K+ concentration. It is postulated that brain endogenous factor II-A may behave as a sodium pump modulator at the synaptic region, an action which depends on K+ concentration.  相似文献   

18.
Na+, K+-ATPase is ubiquitously expressed in the plasma membrane ofall animal cells where it serves as the principal regulator of intracellularion homeostasis. Na+, K+-ATPase is responsible for generating andmaintaining transmembrane ionic gradients that are of vital importance forcellular function and subservient activities such as volume regulation, pHmaintenance, and generation of action potentials and secondary activetransport. The diversity of Na+, K+-ATPase subunit isoforms andtheir complex spatial and temporal patterns of cellular expression suggestthat Na+, K+-ATPase isozymes perform specialized physiologicalfunctions. Recent studies have shown that the subunit isoformspossess considerably different kinetic properties and modes of regulationand the subunit isoforms modulate the activity, expression and plasmamembrane targeting of Na+, K+-ATPase isozymes. This review focuseson recent developments in Na+, K+-ATPase research, and in particular reportsof expression of isoforms in various tissues and experiments aimed atelucidating the intrinsic structural features of isoforms important forNa+, K+-ATPase function.  相似文献   

19.
Short-term (2–30 min) cyclic stretch activates the Na pump in cultured aortic smooth muscle cells (ASMCs). This effect of stretch involves the phosphotidylinositol 3-kinase (PI 3-kinase) participation. Presently, we investigated whether this stimulation is the result of translocation of Na+,K+-ATPase from endosomes to the plasma membrane. ASMCs were stretched 20% for 5 min using the Flexercell Strain Unit. The plasma membrane and endosome fractions were isolated and Western blotted to localize the Na+,K+-ATPase α-1-subunit protein. Membrane marker enzyme, 5′ nucleotidase activity, and the early and recycling endosome markers Rab4 and Rab11 were used to verify the enrichment of these fractions. Stretch increased Na+,K+-ATPase α-1 expression in plasma membrane fractions and decreased it in endosomes. PI 3-kinase inhibitors LY294002 and wortmannin blocked the stretch-induced translocation of the Na+,K+-ATPase α-1-subunit. Rab4 and Rab11 were enriched in the endosomal fraction, whereas 5′ nucleotidase activity was enriched in the plasma membrane fraction. We conclude that stimulation of the Na pump activity by shortterm cyclic stretch is the result, at least in part, of transport of the α-subunit of the enzyme from endosomes to the plasma membrane.  相似文献   

20.
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号