共查询到20条相似文献,搜索用时 0 毫秒
1.
L. H. Pogosian L. S. Nersesova M. G. Gazariants Z. S. Mkrtchian J. I. Akopian 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2011,5(1):60-64
Purine nucleoside phosphorylase (PNP) catalyzes reversible phosphorolysis of purine deoxy- and ribonucleosides with formation
(d)Rib-1-P and corresponding bases. PNP plays a leading role in the cell metabolism of nucleosides and nucleotides, as well
as in maintaining the immune status of an organism. The major aim of the majority of studies on the PNP is the detection of
highly effective inhibitors of this enzyme, derivatives of purine nucleosides used in medicine as immunosuppressors, which
are essential for creating selective T-cell immunodeficiency in a human body for organ and tissue transplantation. The present
work is devoted to the study of the effects of some synthetic derivatives of purine nucleosides on activity of highly purified
PNP from rabbit spleen and also from human healthy and tumor tissues of lung and kidneys. Purine nucleoside analogues modified
at various positions of both the heterocyclic base and carbohydrate residues have been investigated. Several compounds, including
8-mercapto-acyclovir, 8-bromo-9-(3,4-hydroxybutyl)guanine, which demonstrated potent PNP inhibition, could be offered for
subsequent study as immunosuppressors during organ and tissue transplantation. 相似文献
2.
T A Krenitsky J V Tuttle W H Miller A R Moorman G F Orr L Beauchamp 《The Journal of biological chemistry》1990,265(6):3066-3069
The diphosphate of the antiherpetic agent acyclovir [9-[(2-hydroxyethoxy)methyl]guanine] has been shown to inhibit purine nucleoside phosphorylase with unique potency (Tuttle, J. V., and Krenitsky, T. A. (1984) J. Biol. Chem. 259, 4065-4069). A major factor contributing to the superior inhibition by this diphosphate over the corresponding mono- and triphosphates is revealed here. Homologues of acyclovir mono- and diphosphate that extend the ethoxy moiety by one to four methylene groups were synthesized. These homologues were evaluated for their ability to inhibit human purine nucleoside phosphorylase. Within the diphosphate series, the Ki values increased progressively with increasing chain length. With the monophosphates, the Ki values reached a minimum with the homologue containing a pentoxy moiety. A plot of chain length versus Ki values for both mono- and diphosphates showed that both series had similar optimal distances between the aminal carbon and the terminal oxygen anion. Monophosphates with optimal positioning were somewhat less potent than diphosphates with similar positioning. Nevertheless, it was clear that a major factor in determining potency of inhibition was the distance of the terminal phosphate from the guanine moiety. 相似文献
3.
Described herein is the rational design of irreversible inhibitors of human erythrocyte purine nucleoside phosphorylase (PNPase). Inhibitor design started with the observation that the amino group of 8-aminoquinazolin-4(3H)-one interacts with enzyme-bound phosphate. This observation correctly predicted that the 5,8-dione (quinone) and 5,8-dihydroxy (hydroquinone) derivatives of quinazolin-4(3H)-ones would enter the active site. The amine-phosphate interaction also served to confirm that a quinazolin-4(3H)-one binds in the PNPase active sites like a purine substrate. From models of the PNPase active site it was possible to design quinazoline-based quinones that undergo a reductive-addition reaction with an active-site glutamate residue. The best inhibitor studied, 2-(chloromethyl)quinazoline-4,5,8(3H)-trione, rapidly inactivates PNPase by a first-order process with an inhibitor to enzyme stoichiometry of 150. The active-site hydroquinone adduct of this inhibitor eliminates a leaving group to afford a quinone methide species positioned to alkylate another active-site glutamate residue. Thus, this inhibitor is designed to cross-link the PNPase active site by reductive addition followed by the generation of an alkylating quinone methide species. 相似文献
4.
Gregory A Kicska Peter C Tyler Gary B Evans Richard H Furneaux Kami Kim Vern L Schramm 《The Journal of biological chemistry》2002,277(5):3219-3225
Immucillins are logically designed transition-state analogue inhibitors of mammalian purine nucleoside phosphorylase (PNP) that induce purine-less death of Plasmodium falciparum in cultured erythrocytes (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Schramm, V. L., and Kim, K. (2002) J. Biol. Chem. 277, 3226-3231). PNP is present at high levels in human erythrocytes and in P. falciparum, but the Plasmodium enzyme has not been characterized. A search of the P. falciparum genome data base yielded an open reading frame similar to the PNP from Escherichia coli. PNP from P. falciparum (P. falciparum PNP) was cloned, overexpressed in E. coli, purified, and characterized. The primary amino acid sequence has 26% identity with E. coli PNP, has 20% identity with human PNP, and is phylogenetically unique among known PNPs with equal genetic distance between PNPs and uridine phosphorylases. Recombinant P. falciparum PNP is catalytically active for inosine and guanosine but is less active for uridine. The immucillins are powerful inhibitors of P. falciparum PNP. Immucillin-H is a slow onset tight binding inhibitor with a K(i)* value of 0.6 nm. Eight related immucillins are also powerful inhibitors with dissociation constants from 0.9 to 20 nm. The K(m)/K(i)* value for immucillin-H is 9000, making this inhibitor the most powerful yet reported for P. falciparum PNP. The PNP from P. falciparum differs from the human enzyme by a lower K(m) for inosine, decreased preference for deoxyguanosine, and reduced affinity for the immucillins, with the exception of 5'-deoxy-immucillin-H. These properties of P. falciparum PNP are consistent with a metabolic role in purine salvage and provide an explanation for the antibiotic effect of the immucillins on P. falciparum cultured in human erythrocytes. 相似文献
5.
Hampson LJ Arden C Agius L Ganotidis M Kosmopoulou MN Tiraidis C Elemes Y Sakarellos C Leonidas DD Oikonomakos NG 《Bioorganic & medicinal chemistry》2006,14(23):7835-7845
The bioactivity in hepatocytes of glycogen phosphorylase inhibitors that bind to the active site, the allosteric activator site and the indole carboxamide site has been described. However, the pharmacological potential of the purine nucleoside inhibitor site has remained unexplored. We report the chemical synthesis and bioactivity in hepatocytes of four new olefin derivatives of flavopiridol (1-4) that bind to the purine site. Flavopiridol and 1-4 counteracted the activation of phosphorylase in hepatocytes caused by AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), which is metabolised to an AMP analogue. Unlike an indole carboxamide inhibitor, the analogues 1 and 4 suppressed the basal rate of glycogenolysis in hepatocytes by allosteric inhibition rather than by inactivation of phosphorylase, and accordingly caused negligible stimulation of glycogen synthesis. However, they counteracted the stimulation of glycogenolysis by dibutyryl cAMP by both allosteric inhibition and inactivation of phosphorylase. Cumulatively, the results show key differences between purine site and indole carboxamide site inhibitors in terms of (i) relative roles of dephosphorylation of phosphorylase-a as compared with allosteric inhibition, (ii) counteraction of the efficacy of the inhibitors on glycogenolysis by dibutyryl-cAMP and (iii) stimulation of glycogen synthesis. 相似文献
6.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is allosterically regulated. With the substrate inosine the enzyme displayed complex kinetics: positive cooperativity vs inosine when this substrate was close to physiological concentrations, negative cooperativity at inosine concentrations greater than 60 microM, and substrate inhibition at inosine greater than 1 mM. No cooperativity was observed with the alternative substrate, guanosine. The activity of purine nucleoside phosphorylase toward the substrate inosine was sensitive to the presence of reducing thiols; oxidation caused a loss of cooperativity toward inosine, as well as a 10-fold decreased affinity for inosine. The enzyme also displayed negative cooperativity toward phosphate at physiological concentrations of Pi, but oxidation had no effect on either the affinity or cooperativity toward phosphate. The importance of reduced cysteines on the enzyme is thus specific for binding of the nucleoside substrate. The enzyme was modestly inhibited by the pyrimidine nucleotides CTP (Ki = 118 microM) and UTP (Ki = 164 microM), but showed greater sensitivity to 5-phosphoribosyl-1-pyrophosphate (Ki = 5.2 microM). 相似文献
7.
8.
Paola Lucarelli Rosa M. Corbo R. Scacchi R. Palmarino Erminia Carapella-De Luca 《Human genetics》1979,50(1):71-73
Summary A brief genetic report is given on a family with a child affected by nucleoside phosphorylase deficiency. Our observations confirm the genetic heterogeneity of this enzyme deficiency which is inherited as a mendelian autosomal trait. 相似文献
9.
Adenine as substrate for purine nucleoside phosphorylase 总被引:11,自引:0,他引:11
10.
11.
Castilho MS Postigo MP de Paula CB Montanari CA Oliva G Andricopulo AD 《Bioorganic & medicinal chemistry》2006,14(2):516-527
Comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis, and hologram quantitative structure-activity relationship (HQSAR) studies were conducted on a series of 52 training set inhibitors of calf spleen purine nucleoside phosphorylase (PNP). Significant cross-validated correlation coefficients (CoMFA, q(2)=0.68; CoMSIA, q(2)=0.66; and HQSAR, q(2)=0.70) were obtained, indicating the potential of the models for untested compounds. The models were then used to predict the inhibitory potency of 16 test set compounds that were not included in the training set, and the predicted values were in good agreement with the experimental results. The final QSAR models along with the information gathered from 3D contour and 2D contribution maps should be useful for the design of novel inhibitors of PNP having improved potency. 相似文献
12.
Alvarez F Ghérardi A Nebois P Sarciron ME Pétavy AF Walchshofer N 《Bioorganic & medicinal chemistry letters》2002,12(6):977-979
Benzimidazole-4,7-diones derivatives substituted at 1- and/or 2-position have been synthetized and tested as inhibitors of purine nucleoside phosphorylase (PNP), isolated from two strains of Toxoplasma gondii (RH and ME 49). They were identified as inhibitors of both enzymes. 相似文献
13.
We have developed a new assay for purine nucleoside phosphorylase which is based on the release of tritium when [2-3H]inosine is used as the substrate and the reaction is coupled with xanthine oxidase. After the reaction is terminated, residual [2-3H]inosine is adsorbed on charcoal and the supernatant solution is assayed for radioactivity by liquid scintillation spectrometry. The new method gave results indistinguishable from those obtained by spectrophotometric determination of uric acid produced by the phosphorylase-xanthine oxidase-coupled reaction or by radioassay of chromatographically isolated [8-14C]hypoxanthine when [8-14C]inosine was used as substrate. The new method is faster than those involving chromatographic isolation of products. In comparison with spectrophotometric methods, it not only requires less manual time, but it also has the advantage that it can be used to study inhibitors whose ultraviolet absorption might interfere with spectrophotometric determination of uric acid. 相似文献
14.
15.
Canduri F Fadel V Basso LA Palma MS Santos DS de Azevedo WF 《Biochemical and biophysical research communications》2005,327(3):646-649
Human purine nucleoside phosphorylase has been submitted to intensive structure-based design of inhibitors, most of them using low-resolution structures of human PNP. Recently, several structures of human PNP have been reported, which allowed redefinition of the active site and understanding of the structural basis for inhibition of PNP by acyclovir and immucillin-H. Based on previously solved human PNP structures, we proposed here a new catalytic mechanism for human PNP, which is supported by crystallographic studies and explains previously determined kinetic data. 相似文献
16.
Lewandowicz A Tyler PC Evans GB Furneaux RH Schramm VL 《The Journal of biological chemistry》2003,278(34):31465-31468
Genetic deficiency of human purine nucleoside phosphorylase (PNP) causes T-cell immunodeficiency. The enzyme is therefore a target for autoimmunity disorders, tissue transplant rejection and T-cell malignancies. Transition state analysis of bovine PNP led to the development of immucillin-H (ImmH), a powerful inhibitor of bovine PNP but less effective for human PNP. The transition state of human PNP differs from that of the bovine enzyme and transition state analogues specific for the human enzyme were synthesized. Three first generation transition state analogues, ImmG (Kd = 42 pM), ImmH (Kd = 56 pM), and 8-aza-ImmH (Kd = 180 pM), are compared with three second generation DADMe compounds (4'-deaza-1'-aza-2'-deoxy-1'-(9-methylene)-immucillins) tailored to the transition state of human PNP. The second generation compounds, DADMe-ImmG (Kd = 7pM), DADMe-ImmH (Kd = 16 pM), and 8-aza-DADMe-ImmH (Kd = 2.0 nM), are superior for inhibition of human PNP by binding up to 6-fold tighter. The DADMe-immucillins are the most powerful PNP inhibitors yet described, with Km/Kd ratios up to 5,400,000. ImmH and DADMe-ImmH are orally available in mice; DADMe-ImmH is more efficient than ImmH. DADMe-ImmH achieves the ultimate goal in transition state inhibitor design in mice. A single oral dose causes inhibition of the target enzyme for the approximate lifetime of circulating erythrocytes. 相似文献
17.
18.
Human erythrocytic purine nucleoside phosphorylase: reaction with sugar-modified nucleoside substrates 总被引:5,自引:0,他引:5
The kinetic parameters (Km and Vmax) of sugar-modified analogues of inosine and guanosine have been determined with human erythrocytic purine nucleoside phosphorylase (PNP). Steric alterations at the 2' and 3' positions greatly lessened or abolished substrate activity. However, the 5'-deoxy- and 2',5'-dideoxy-beta-D-ribofuranosyl and the alpha-L-lyxosyl analogues were good substrates, indicating that the 5'-hydroxyl and the orientation of the 5'-hydroxy-methyl group are not important for binding. The sugar phosphate analogue, 5-deoxyribose 1-phosphate, was synthesized from 5'-deoxyinosine with immobilized PNP, and its presence was verified by using it in the enzymic synthesis of 5'-deoxyguanosine. The adenosine versions of the 5'-modified analogues were also found to react with adenosine deaminase, albeit at less than 1% of Vmax. 相似文献
19.
J Wierzchowski E Kulikowska A Bzowska A Holy L Magnowska D Shugar 《Nucleosides & nucleotides》1999,18(4-5):875-876
Association between calf spleen purine nucleoside phosphorylase and a series of phosphonylalkoxyalkyl derivatives of purine bases was studied by inhibition kinetics and fluorimetric titrations. Dissociation constants, determined by fluorimetric titration in phosphate-free conditions, were lower than inhibition constants in 1 mM phosphate, and inhibition was still weaker in 50 mM phosphate, in accord with the postulated bisubstrate analogue character of this class of inhibitors. 相似文献
20.