首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study characterized the profile of nuclear remodeling in nuclear transplant rabbit embryos and investigated the relationship between chromatin behavior after transfer and embryo development. The developmental potential and pattern of remodeling of donor nuclei from cleavage-, morula-, and blastocyst- (inner cell mass ICM, and trophectoderm, TE) stage donors were evaluated. In addition, we determined whether a modification in the synchrony between blastomere fusion and oocyte activation altered the profile of nuclear remodeling and affected development of reconstituted embryos. Development to blastocysts was similar with 8- and 32-cell-stage donor nuclei (42% and 33%, respectively, p greater than 0.1). However, it was reduced with ICM transplants (17%, p less than 0.05), and development of TE transplants did not progress beyond the 8-cell stage. Upon blastomere fusion into nonactivated oocyte cytoplasm, nuclear remodeling was characterized by premature chromosome condensation (PCC), followed by pronuclear (PN) formation and swelling. PCC occurred synchronously within 1.2-1.5 h post-fusion with all stages of donor nuclei (p greater than 0.1). PN formation in 8- and 32-cell transplants occurred approximately 4 h after fusion, and was synchronous to that of female pronuclei in activated oocytes; however, it was delayed in ICM and TE transplants (p less than 0.01). With all stages of donor nuclei, final nuclear diameter was similar to, or larger than, that of female pronuclei. Fusion to activated oocyte cytoplasm, as opposed to nonactivated cytoplasm, prevented PCC and extensive nuclear swelling (16.0 +/- 0.7 vs. 30 +/- 0.7 microns, respectively, p less than 0.01). Nuclear diameter in early embryos was smaller (p less than 0.01), and development to blastocysts was reduced (p less than 0.05). The results indicate that remodeling of the donor nucleus is not essential for development to blastocysts; however, it is beneficial. Furthermore, complete reprogramming seems possible only after remodeling of the donor nucleus, i.e., PCC in nonactivated cytoplasm, followed by nuclear swelling upon activation of the oocyte.  相似文献   

2.
Experiments were conducted to examine the effects of (a) different activation methods, (b) incubation time in calcium-free medium and (c) bisbenzimide staining on the activation and subsequent development of pig oocytes. Oocytes were matured in vitro and activated by one of the following methods: combined thimerosal/dithiothreitol (DTT) treatment, calcium ionophore A23187 treatment followed by incubation in the presence of 6-dimethylaminopurine (6-DMAP), electroporation, and electroporation followed by incubation with cytochalasin B. There were no significant differences in the activation rate (ranging from 70.0% to 88.3%) and the percentage of cleaved embryos after activation (ranging between 48.8% and 58.8%) among the four treatment groups (p < 0.05). The rate of development of the blastocyst stage in oocytes activated by thimerosal/DTT (10.0%) or electroporation followed by cytochalasin B treatment (12.3%) was significantly higher (p < 0.05) than in the group activated with A23187/6-DMAP (2.5%). Both the activation rate and the rate of blastocyst formation in oocytes that were incubated in Ca(2+)-free medium for 8 h before thimerosal/DTT activation were significantly lower (p < 0.05) than in those incubated for 0, 1 or 4 h. Intracellular Ca2+ measurements revealed that the Ca2+ homeostasis in these oocytes were severely altered. Staining of oocytes with 5 micrograms/ml bisbenzimide for 2 h decreased the quality of blastocysts and increased the rate of degenerated embryos at day 6. Two activation protocols (thimerosal/DTT and electroproation) were used for activation after nuclear transfer; the rate of nuclear formation did not differ in the oocytes activated by the two different methods.  相似文献   

3.
The rabbit was used as a model for nuclear transfer. A critical step in nuclear transfer is oocyte activation, which was evaluated in this research. Optimal field strength of an electric stimulus for activation was examined. A significantly higher activation rate in all criteria tested was achieved when oocytes were activated electrically with a field strength of 2.4 kV/cm versus 1.2 or 1.8 kV/cm. Also, electrical stimulation with combined alternating current (AC) and direct current (DC) was superior to DC stimulation alone for activation. In another study involving 586 oocytes, exposure of oocytes to cytochalasin B for 1 h followed by activation with electrical stimulation significantly improved development of the oocytes to blastocyst stage compared to oocytes without cytochalasin B pre-exposure (38% vs 26%, p less than 0.05). Cytochalasin B exposure alone (control), however, had no effect on activation. Exposing oocytes to activation medium without electrical stimulation also activated some oocytes. In the nuclear transfer experiment, blastomeres from 8-cell embryos cultured for 20-24 h to the 32-64-cell stage were used as nuclear donor cells. Of 491 oocytes used, 459 (93%) survived the enucleation and fusion procedure, 370 (81%) fused, and 284 (77%) developed into 2-4-cell embryos. A total of 243 of these 2-4-cell embryos were transferred to 15 pseudopregnant recipients and produced 8 young (3%). Although the efficiency is low, this study demonstrated that rabbit morulae cultured for 20-24 h to the 32-64-cell stage as nuclear donors for transfer remain totipotent.  相似文献   

4.
The present study examined the effect of elevated Ca(2+) concentration in fusion/activation medium on the fusion and development of fetal fibroblast nuclear transfer (NT) porcine embryos. Frozen-thawed and serum starved fetal fibroblasts were transferred into the perivitelline space of enucleated oocytes. Cell fusion and activation were induced simultaneously with electric pulses in 0.3 M mannitol-based medium containing 0.1 or 1.0 mM CaCl(2). Some fused embryos were further activated 1 hr after the fusion treatment by exposure to an electric pulse. The NT embryos were cultured in vitro for 6 days. Fusion and blastocyst formation rates were significantly (P<0.05) increased by increasing the Ca(2+) concentration from 0.1 mM (67.1 and 6.3%) to 1.0 mM (84.7 and 15.8%). However, no difference in the number of cells in blastocysts was observed between the two groups. A higher percentage of blastocyst was also observed when control oocytes were parthenogenetically activated in the presence of elevated Ca(2+) (19.3% vs. 32.4%, P<0.05). When the reconstituted oocytes were fused in the medium containing 1.0 mM CaCl(2), increasing the number of pulses from 2 to 3 or an additional activation treatment did not enhance the blastocyst formation rate or cell number in blastocysts. These results demonstrate that increasing the Ca(2+) concentration in the fusion/activation medium can enhance the fusion and blastocyst formation rates of fetal fibroblast NT porcine embryos without an additional activation treatment.  相似文献   

5.
6.
To clone a pig from somatic cells, we first validated an electrical activation method for use on ovulated oocytes. We then evaluated delayed versus simultaneous activation (DA vs. SA) strategies, the use of 2 nuclear donor cells, and the use of cytoskeletal inhibitors during nuclear transfer. Using enucleated ovulated oocytes as cytoplasts for fetal fibroblast nuclei and transferring cloned embryos into a recipient within 2 h of activation, a 2-h delay between electrical fusion and activation yielded blastocysts more reliably and with a higher nuclear count than did SA. Comparable rates of development using DA were obtained following culture of embryos cloned from ovulated or in vitro-matured cytoplasts and fibroblast or cumulus nuclei. Treatment of cloned embryos with cytochalasin B (CB) postfusion and for 6 h after DA had no impact on blastocyst development as compared with CB treatment postfusion only. Inclusion of a microtubule inhibitor such as nocodozole with CB before and after DA improved nuclear retention and favored the formation of single pronuclei in experiments using a membrane dye to reliably monitor fusion. However, no improvement in blastocyst development was observed. Using fetal fibroblasts as nuclear donor cells, a live cloned piglet was produced in a pregnancy that was maintained by cotransfer of parthenogenetic embryos.  相似文献   

7.
The present studies were carried out to investigate the effects of intensity of dc pulse, number of dc pulse and equilibration before fusion/activation on developmental ability of porcine embryos derived from nuclear transfer. In experiment 1, different fusion/activation intensity (two dc pulses of 0.4, 0.8, 1.2, 1.6 and 2.0 kV/cm for 30 micros, respectively) was carried out to investigate development of embryos. In experiment 2, the reconstructed oocytes were fused and activated with one, two or three dc pulses of 1.2 kV/cm for 30 micros. In experiment 3, reconstructed oocytes were equilibrated in TCM-199 medium for 0-6 h, respectively, and fused/activated with one dc pulse of 1.2 kV/cm for 30 micros. The reconstructed embryos were cultured in PZM-3 medium containing 0.3% BSA. When oocytes were fused with donor cell by two dc pulses of 0.4 kV/cm for 30 micros, the rates of cleavage and blastocyst formation were significantly lower (32.9% and 2.5%) than those of fused by 0.8 kV/cm (59.0% and 17.4%) or 1.2 kV/cm (63.3% and 18.4%), respectively. One dc pulse of 1.2 kV/cm for 30 micros was enough to fuse and activate embryos to develop to blastocyst (24.8%). Equilibration for 2-3 h in TCM-199 before fusion/activation was beneficial for improving the developmental ability of embryos produced by nuclear transfer (25.6-23.3% at blastocysts).  相似文献   

8.
Parthenogenetic development (PA) is often used as a model to investigate activation protocols for nuclear transfer (NT) embryos. The objective of this study was to compare the development, as well as the dynamics of the nuclear materials and microtubules of PA and NT embryos following similar activation treatment. Our results demonstrate that, during parthenogenesis, activation through either electrical pulses or chemical stimulation alone resulted in low cleavage rates and compromised development. A combination of two sets of electrical pulses and a 2-h-exposure to chemical activation medium (5 microg/ml cycloheximide (CHX) and 2 mM 6-dimethylaminopurine (6-DMAP) in KSOM+0.1% BSA) could effectively activate rabbit oocytes, and resulted in a 99% (n = 73) cleavage rate with greater than 60% (n = 73) developing to blastocysts at day 4. However, the same activation protocol following NT resulted in only 65-72% of oocytes cleaved (depending on donor cell type), with less than 20% developing to the blastocyst stage. The differences observed between NT and PA embryos subjected to the same activation protocol were also evident in terms of the time required for their development to the blastocyst stage, as well as the cell numbers present in blastocysts at day 6. Furthermore, laser confocal microscopy revealed that pronuclear formation in the NT embryos was delayed by comparison to that in the parthenotes. In conclusion, our study suggests that an effective protocol for parthenogenesis cannot promise a comparable outcome for NT embryos.  相似文献   

9.
Blastomeres from 2- to 32-cell bovine embryos were transferred to enucleated oocytes matured either in vivo or in vitro by micromanipulation and electrofusion. The percentage of donor cells fusing with the recipient oocytes was dependent on relative cell size or stage of development. Therefore, when smaller donor karyoplasts (17- to 32-cell vs. 2- to 8-cell) were transferred, the rate of fusion was significantly less (p less than 0.01). After fusion, nuclear transfer embryos were cultured either in vitro or in vivo (in a ligated ovine oviduct). Nuclear transfer embryos cultured in vitro developed to the 4- to 6-cell stage after 72 h (4-cell, 71%; 8-cell, 33%, 16-cell, 33%; p less than 0.30), whereas nuclear transfer embryos cultured in vivo developed to the morula or blastocyst stage (2- to 8-cell, 11.7%; 9- to 16-cell, 16.0%; 17- to 32-cell, 8.3%; p greater than 0.30) after 4 or 5 days. Freshly ovulated oocytes (collected 36 h after the onset of estrus), when used as recipients, resulted in morula/blastocyst-stage embryos more often than in vitro-matured oocytes or in vivo-matured oocytes collected 48 h after the onset of estrus (20% vs. 7.8% and 6.7%, respectively; p less than 0.02). After in vivo culture, nuclear transfer embryos were mounted and fixed or transferred nonsurgically to the uteri of 6- to 8-day postestrus heifers. Seven pregnancies resulted from the transfer of 19 embryos into 13 heifers; 2 heifers completed pregnancy with the birth of live calves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The present study investigated the effect of lactate/pyruvate supplement in culture medium and of chemical activation after electric stimulus on in vitro development of porcine somatic cell nuclear transfer (SCNT) embryos. In vitro matured gilt oocytes were enucleated, reconstructed with fetal fibroblasts, and simultaneously fused/activated using a single pulse of 2.0 kV/cm for 30 microsec. In Experiment 1, reconstructed embryos were cultured in North Carolina State University (NCSU)-23 medium supplemented with either 5.5 mM glucose (Group A) or lactate (5.0 mM)/pyruvate (0.5 mM) (Group B). Compared to Group A, cleavage rate (64% vs. 47%) was higher and more blastocysts developed in Group B (17% vs. 6% at Day 6, 21% vs.11% at Day 7). Experiment 2, embryos reconstructed by electric stimulus (2.0 kV/cm for 30 microsec) were subjected to three activation protocols: (1) no chemical activation (Group C), (2) 7.5 microg/ml cytochalasin B treatment at 2 hr after electric stimulus (Group D), and (3) 5 microg/ml 6-dimethylaminopurine (Group E) treatment at 2 hr after electric stimulus. The reconstructed embryos were cultured for 7 days in NCSU-23 medium supplemented with lactate (5.0 mM)/pyruvate (0.5 mM). The rates of blastocyst formation on Day 6 and Day 7 in Group C (17 and 20%, respectively) or Group D (15, 20%, respectively) were higher than in Group E (9 and 12%, respectively). The percentage of two pseudo-pronucleus (PPN) formations in Group D (88%) was significantly higher than in Group C (71%) and Group E (72%). Mean cell numbers of blastocysts in Group D (63.4 +/- 15.8) were higher than in Group C (43.9 +/- 16.5) and Group E (32.9 +/- 17.9), due to increased trophectoderm (TE) cell numbers. Our results indicate that supplementing NCSU-23 medium with lactate/pyruvate and exposure of cytochalasin B after electrical stimulus can improve in vitro developmental competence of porcine SCNT embryos.  相似文献   

11.
Miyoshi K  Saeki K  Sato E 《Cloning》2000,2(4):175-184
The present study was conducted to establish the most suitable system for producing porcine reconstructed embryos by transferring cells from blastocyst-derived cell lines into enucleated oocytes. When the cells were fused to preactivated metaphase II oocytes, or the cells and arrested metaphase II oocytes were fused in medium without CaCl(2) and MgSO(4), the percentages (43-53%) of fused embryos were significantly lower than those (72-79%) produced by fusing the cells to arrested metaphase II oocytes in medium containing CaCl(2) and MgSO(4). High productive efficiency (7%) of blastocysts was obtained when reconstituted embryos produced by the last method were activated again at 3 hours after fusion (F/A --> Activation). Pronuclear formation was observed in 80-91% of the reconstructed embryos produced by F/A --> Activation, with no significant differences between different culture periods in the medium containing cytochalasin B. When cultured in the medium containing cytochalasin B for 0-1 h, almost all (83-85%) the embryos had one pronucleus and one polar body. However, the number of embryos with two pronuclei and no polar bodies was increased significantly by culturing in the medium containing cytochalasin B for 2-4 h. The cleavage rate (34-48%) of reconstructed embryos was not affected by the presence of cytochalasin B for 2 h after activation. However, the percentage of embryos that developed to the blastocyst stage was significantly higher in the presence (23%) than absence (5%) of cytochalasin B. The results indicate that F/A --> Activation and cytochalasin B treatment are effective for the production of porcine embryos reconstituted with cells from blastocyst-derived cell lines and enucleated oocytes.  相似文献   

12.
Yin XJ  Tani T  Kato Y  Tsunoda Y 《Theriogenology》2000,54(9):1469-1476
The present study determined a suitable parthenogenetic activation procedure for rabbit oocytes and examined the developmental potential of enucleated oocytes receiving cultured cumulus cells. Unfertilized oocytes recovered from superovulated rabbits were activated with one or two sets of electrical pulses, with or without subsequent administration of 6-dimethylaminopurine (6-DMAP). The proportion of oocytes treated with one or two sets of electrical pulses and 6-DMAP that cleaved (87% and 98%, respectively) and developed into blastocysts (77% and 85%, respectively) was significantly higher (P < 0.05) than those activated with electrical pulses alone (30% and 42% for cleavage, 7% and 17% for blastocysts). Cumulus cells separated from ovulated oocytes obtained from mature rabbits were cultured for three to five passages and then induced to quiescence by serum starvation before nuclear transfer. The enucleated oocytes receiving cumulus cells were activated with electrical pulses followed by the addition of 6-DMAP, and cultured in vitro for 5 to 6 d or transferred to pseudopregnant recipient females 1 d after activation. Of 186 nuclear-transferred oocytes, 123 (66%) cleaved and 42 (23%) developed into blastocysts. After transfer of 174 nuclear-transferred oocytes to 8 recipient females, a total of 3 implantation sites were observed in 3 recipient females but no fetuses were obtained.  相似文献   

13.
Optimization of parthenogenetic activation protocol in porcine   总被引:10,自引:0,他引:10  
The effects of the electrical field strengths, number of pulses, and post-activation media on chromatin conformation and parthenogenetic development were studied to optimize the activation protocol for porcine nuclear transfer. In experiment 1, electrical field strengths were examined. Oocytes were subjected to square direct current pulses at output voltages of 1.2, 1.7, 2.2, and 2.7 kV/cm for 1 x 30 microsec. The voltage resulting from experiment 1 was 2.2 kV/cm, in which 50.0% of activated oocytes developed to blastocysts in vitro. In experiment 2, the influence of 1, 2, and 3 pulses on blastocyst development was tested using field strengths and post-activation medium described in experiment 1. Oocytes activated by a single 30 microsec pulse of 2.2 kV/cm DC yielded a higher blastocyst rate (56.3%) than oocytes activated by 2 or 3 pulses (<42.5%). In experiment 3 and 4, we investigated the effects of cytochalasin B (CB), cycloheximide (CH), and CB + CH on nuclear development stages and parthenogenetic development following a single 30 microsec pulse of 2.2 kV/cm DC. The percentage of activated oocytes was not different among CB (93.3%), CB + CH (98.3%), control (80.0%), and CH (80.0%) groups 12 hr after activation. Treatment with CB (57.5%) or CB + CH (53.8%) enhanced the blastocyst rate compared with other groups, CH (23.8%) treated- and control group (18.8%). The results demonstrated that a single 30 microsec pulse of 2.2 kV/cm DC followed by culturing in post-activation medium with CB for 5 hr were effective parameters for parthenogenetic activation and blastocyst formation of in vitro matured porcine oocytes which suggests that a single calcium rise is sufficient to activate pig oocytes and to achieve high rate of blastocyst development.  相似文献   

14.
Nuclear reprogramming in nuclear transplant rabbit embryos   总被引:26,自引:0,他引:26  
The first six genetically verified nuclear transplant rabbits have been produced in this study. Individual eight-cell stage embryo blastomeres were transferred and fused with enucleated mature oocytes of which six full-term offspring were produced out of 164 manipulated eggs. The following efficiency rates were determined for the nuclear transplantation procedure: chromosomal removal from oocytes, 92%; fusion rate, 84%; activation rate, 46%; embryo transfer rate, 27%. Additional reasons for the low efficiency rate of nuclear transplant embryos may include limited development due to aging in recipient oocytes and asynchronous transfers of manipulated embryos to recipient females. The successful development to term may have been due to the ability of the mature oocyte to reprogram the eight-cell stage nuclei. The number of cells in blastocysts derived from isolated eight-cell blastomeres (18 +/- .08) was lower than that of nonmanipulated pronuclear (106 +/- 5.1) and nuclear transplant embryos derived from eight-cell stage nuclei (91 +/- 10.2) (p less than 0.001). This evidence along with the significant amount of nuclear swelling in nuclear transplant embryos and a delay in the time of blastocyst formation indicate that nuclear reprogramming had taken place in these embryos. Successful nuclear reprogramming indicates that serial transfers could result in the expanded multiplication of mammalian embryos.  相似文献   

15.
The objective of this study was to determine developmental pattern, total cell number, apoptosis and apoptosis-related gene expression in haploid and diploid embryos following parthenogenetic activation. In vitro-matured porcine oocytes were activated by electrical pulses and cultured in the absence or presence of cytochalasin B for 3 h. Zygotes with two polar bodies (haploid) and one polar body (diploid) were carefully selected and were further cultured in NCSU 23 medium containing 0.4% bovine serum albumin (BSA) for 7 days. The percentage of development to blastocyst stage was higher (p < 0.01) in the diploid than in the haploid parthenotes. In haploid blastocysts, average total cell number was significantly reduced (p < 0.05) and apoptosis was increased at day 7. The relative abundance of Bcl-xL and Bak mRNA in the diploid blastocysts was similar to that of in vivo-fertilized embryos. However, Bcl-xL was significantly decreased, and Bak mRNA was significantly increased (p < 0.05) in haploid parthenotes compared with the diploid parthenotes. These results suggest that the haploid state affects apoptosis-related gene expression which results in increased apoptosis and decreased developmental competence of haploid parthenotes.  相似文献   

16.
影响猪体细胞核移植重构胚体外发育的若干因素   总被引:8,自引:0,他引:8  
以卵丘细胞为核供体细胞组成重构胚,卵裂率达到56.7%,发育至桑椹胚达11.7%、孵化囊胚率为6.7%,显著高于成纤维细胞组成的重构胚(P<0.05)。我们研究了卵母细胞的采集方法,激活方法和卵龄对卵丘细胞核移植重构胚体外发育的影响。以血清饥饿法将卵丘细胞诱导至G0或G1期,抽吸法/解剖法采集卵母细胞,体外培养33或44h,将卵丘细胞置于去核卵母细胞的卵周隙中,重构胚以钙离子载体A23817或电泳冲结合6-DMAP激活处理,体外培养6天,结果表明,卵 母细胞采集方法、激活液中细胞松弛素(CB)并不影响重构胚的发育(以卵龄44h的卵母细胞为受体);而以电脉冲结合6-DMAP激活处理能提高重构胚发育能力(以卵龄33h的卵母细胞为受体)(P<0.05)。本研究显示,以电脉冲结合6-DMAP激活卵丘细胞重构胚,能在体外发育至囊胚。  相似文献   

17.
The developmental potential of bovine fetal germ cells was evaluated using nuclear transfer. Male and female germ cells at three stages of fetal development from 50- to 57-, 65- to 76- or 95- to 105-day-old fetuses were fused to enucleated oocytes 2 to 4 hr prior to activation with 7% ethanol (5 min) followed by 5 hr culture in 10 microg/ml cycloheximide and 5 microg/ml cytochalasin B. The in vitro development of nuclear transfer embryos derived from germ cells was compared with those derived from embryonic cells (blastomeres from day 5 or day 6 embryos). Blastocyst rate (38%) obtained with germ cells from 50- to 57-day-old fetuses tended to be higher than when using germ cells from 65- to 76- or 95- to 105-day-old fetuses (23% and 20%, respectively). Within each stage of fetal development, the proportion of blastocysts derived from male germ cells tended to be higher than that obtained with female germ cells, but due to the high variation between individual fetuses this difference was not significant. With the post activation procedure used in this study, germ cells from 50- to 57-day-old fetuses supported the development of nuclear transfer embryos to the blastocyst stage significantly (P<0.05) better than nuclei of embryonic cells (38% vs. 3%). After transfer of blastocysts derived from germ cells of 50-to 57- and 65- to 76-day fetuses, respectively, 45% (5/11) and 50% (3/6) recipients were pregnant on day 30. The corresponding pregnancy rates on day 90 were 36% (4/11) and 17%(1/6). One live male calf was delivered by cesarean section at day 277 of gestation. Our results show that nuclei of bovine fetal germ cells may successfully be reprogrammed to support full-term development of nuclear transfer embryos.  相似文献   

18.
Cloning of bovine embryos by multiple nuclear transfer   总被引:3,自引:0,他引:3  
The in vitro development of multiple generation bovine nuclear transferred embryos to blastocysts and their survival ability after freezing and thawing were examined. Parent donor embryos which had 20 to 50 cells were recovered from superovulated cows. Follicular oocytes matured in vitro were used as recipient oocytes. The recipient oocytes enucleated at 22 to 24 h after the onset of maturation were preactivated at 33 h. Enucleated oocytes with a donor blastomere were fused 9 h after activation by an electric stimulus and the fused oocytes were cultured in vitro (first generation). Reconstituted oocytes that had developed to the 8- to 16-cell stage 3 to 4 d after fusion were used as donor embryos for the next generation. Recloning procedures were performed twice (second and third generations). The proportion of recipient oocytes successfully fused with a blastomere increased with the cycle of nuclear transfer. Eighty to 86% of fused oocytes developed to the 2-cell stage and there was no significant difference with the generation. The proportion of reconstituted embryos receiving blastomeres derived from first generation embryos had higher developmental ability in vitro, than those derived from other generations (43 vs 31% for 8 to 16-cell stage, 37 vs 20 and 21% for blastocyst stage). The number of cloned blastocysts increased with repeated nuclear transfer (once: 6.2 +/- 4.3, twice: 19.8 +/- 9.2 and three times: 30.0 +/- 14.7) but varied greatly with each parent donor embryo. The in vitro viability of cloned blastocysts after freezing and thawing (59%) was low but not significantly different from that obtained for in vitro fertilized blastocysts (72%). After transfer of either fresh or frozen-thawed cloned blastocysts to 21 recipients, 10 of them were pregnant on Day 60. Four and 3 offspring were produced from 20 fresh and 14 frozen-thawed blastocysts,respectively.  相似文献   

19.
We conducted this study to examine whether or not co-culture with theca cells improves the maturation rate of horse oocytes with compact cumuli and to evaluate the cytoplasmic competence of oocytes after maturation by assessing fusion, activation and cleavage rates after nuclear transfer. We collected oocytes by scraping follicles from slaughterhouse-derived ovaries and classified them as having an expanded or a compact cumulus. Expanded oocytes were matured in M199 supplemented with 10% FBS and 5 microU/ml FSH for 24 h: compact oocytes were cultured in the same medium, or they were co-cultured in the same medium with theca interna explants, for 24 or 42 h. Oocytes were held with or without 10 microg/ml cytochalasin B, before washing and micromanipulation. and they were fused with donor fibroblasts by electrical pulse. Fused oocytes were activated with Ca ionophore/cycloheximide, cultured for 5 days, and stained with Hoechst to assess nuclear development. We considered oocytes with an enlarged nucleus, or having cleavage with multiple nuclei, to be activated. There was no significant difference in overall maturation rate between compact oocytes cultured with theca and compact controls. When these two groups were combined, there was a significant increase in the proportion of oocytes in MII between 24 and 42 h (P < 0.05). Expanded oocytes had a significantly higher rate of maturation than did compact oocytes (64% versus 25-30%; P < 0.001). There were no significant differences in rates of successful enucleation, fusion, activation or cleavage between compact control and compact + theca oocytes, nor between compact and expanded oocytes; however, expanded oocytes treated with cytochalasin B had a significantly higher survival rate after enucleation than did untreated expanded oocytes (P < 0.05). Three embryos developed from recombined oocytes, with maximum cleavage to 10 cells. The results of this study indicate that co-culture with theca cells does not increase either nuclear or cytoplasmic maturation of compact oocytes. Cytochalasin B is helpful in increasing survival of horse oocytes during enucleation. In vitro matured equine oocytes have the potential to develop into embryos after nuclear transfer; this is the first full report of production of cloned embryos in this species.  相似文献   

20.
This study investigated the basic conditions required for the production of horse embryos by the transfer of the nuclei of fetal and adult fibroblast cells to enucleated oocytes. Cumulus-oocyte complexes were recovered from abattoir ovaries and matured in vitro in groups of 20-30 for 28-30 h in tissue culture medium 199 containing 20% v:v fetal bovine serum in coculture with equine oviduct epithelial cells. Fetal fibroblast cells (FFC) were derived from a 32-day-old Thoroughbred x Pony fetus, and adult skin fibroblast cells (SFC) were obtained from subdermal biopsies recovered from a 4-yr-old female Pony. The rates of fusion between the recipient cytoplasm with either FFC or SFC were significantly greater when the cells were treated with a combination of direct current (DC) pulses and Sendai virus rather than with DC pulses alone (81%-82% vs. 49%-57%, P < 0.05). There were no differences in the rates of nuclear reprogramming between FFC and SFC (88% vs. 84%), but the rate of cleavage of the resulting embryos to the 2-cell stage was higher when FFC were used (53%) than when SFC were used (35%). Blastocysts were obtained from oocytes reconstructed with both types of donor cells and after culture in vitro for 6-7 days, but the overall proportion of blastocysts produced was very low in both cases (FFC, 4%; SFC, 7%). These results demonstrate a very limited potential for in vitro development of horse embryos after nuclear reprogramming following the transfer of nuclei from either fetal or adult fibroblasts into recipient enucleated oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号