首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine here the roles of cellular splicing factors and virus regulatory proteins in coordinately regulating alternative splicing of the tat/rev mRNA of equine infectious anemia virus (EIAV). This bicistronic mRNA contains four exons; exons 1 and 2 encode Tat, and exons 3 and 4 encode Rev. In the absence of Rev expression, the four-exon mRNA is synthesized exclusively, but when Rev is expressed, exon 3 is skipped to produce an mRNA that contains only exons 1, 2, and 4. We identify a purine-rich exonic splicing enhancer (ESE) in exon 3 that promotes exon inclusion. Similar to other cellular ESEs that have been identified by other laboratories, the EIAV ESE interacted specifically with SR proteins, a group of serine/arginine-rich splicing factors that function in constitutive and alternative mRNA splicing. Substitution of purines with pyrimidines in the ESE resulted in a switch from exon inclusion to exon skipping in vivo and abolished binding of SR proteins in vitro. Exon skipping was also induced by expression of EIAV Rev. We show that Rev binds to exon 3 RNA in vitro, and while the precise determinants have not been mapped, Rev function in vivo and RNA binding in vitro indicate that the RNA element necessary for Rev responsiveness overlaps or is adjacent to the ESE. We suggest that EIAV Rev promotes exon skipping by interfering with SR protein interactions with RNA or with other splicing factors.  相似文献   

2.
In addition to facilitating the nuclear export of incompletely spliced viral mRNAs, equine infectious anemia virus (EIAV) Rev regulates alternative splicing of the third exon of the tat/rev mRNA. In the presence of Rev, this exon of the bicistronic RNA is skipped in a fraction of the spliced mRNAs. In this report, the cis-acting requirements for exon 3 usage were correlated with sequences necessary for Rev binding and transport of incompletely spliced RNA. The presence of a purine-rich exon splicing enhancer (ESE) was required for exon 3 recognition, and the addition of Rev inhibited exon 3 splicing. Glutathione-S-transferase (GST)-Rev bound to probes containing the ESE, and mutation of GAA repeats to GCA within the ESE inhibited both exon 3 recognition in RNA splicing experiments and GST-Rev binding in vitro. These results suggest that Rev regulates alternative splicing by binding at or near the ESE to block SR protein-ESE interactions. A 57-nucleotide sequence containing the ESE was sufficient to mediate Rev-dependent nuclear export of incompletely spliced RNAs. Rev export activity was significantly inhibited by mutation of the ESE or by trans-complementation with SF2/ASF. These results indicate that the ESE functions as a Rev-responsive element and demonstrate that EIAV Rev mediates exon 3 exclusion through protein-RNA interactions required for efficient export of incompletely spliced viral RNAs.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) pre-mRNA splicing is regulated in order to maintain pools of unspliced and partially spliced viral RNAs as well as the appropriate levels of multiply spliced mRNAs during virus infection. We have previously described an element in tat exon 2 that negatively regulates splicing at the upstream tat 3' splice site 3 (B. A. Amendt, D. Hesslein, L.-J. Chang, and C. M. Stoltzfus, Mol. Cell. Biol. 14:3960-3970, 1994). In this study, we further defined the element to a 20-nucleotide (nt) region which spans the C-terminal vpr and N-terminal tat coding sequences. By analogy with exon splicing enhancer (ESE) elements, we have termed this element an exon splicing silencer (ESS). We show evidence for another negative cis-acting region within tat-rev exon 3 of HIV-1 RNA that has sequence motifs in common with a 20-nt ESS element in tat exon 2. This sequence is juxtaposed to a purine-rich ESE element to form a bipartite element regulating splicing at the upstream tat-rev 3' splice site. Inhibition of the splicing of substrates containing the ESS element in tat exon 2 occurs at an early stage of spliceosome assembly. The inhibition of splicing mediated by the ESS can be specifically abrogated by the addition of competitor RNA. Our results suggest that HIV-1 RNA splicing is regulated by cellular factors that bind to positive and negative cis elements in tat exon 2 and tat-rev exon 3.  相似文献   

4.
Inefficient splicing of human immunodeficiency virus type 1 (HIV-1) RNA is necessary to preserve unspliced and singly spliced viral RNAs for transport to the cytoplasm by the Rev-dependent pathway. Signals within the HIV-1 genome that control the rate of splicing include weak 3′ splice sites, exon splicing enhancers (ESE), and exon splicing silencers (ESS). We have previously shown that an ESS present within tat exon 2 (ESS2) and a suboptimal 3′ splice site together act to inhibit splicing at the 3′ splice site flanking tat exon 2. This occurs at an early step in spliceosome assembly. Splicing at the 3′ splice site flanking tat exon 3 is regulated by a bipartite element composed of an ESE and an ESS (ESS3). Here we show that ESS3 is composed of two smaller elements (AGAUCC and UUAG) that can inhibit splicing independently. We also show that ESS3 is more active in the context of a heterologous suboptimal splice site than of an optimal 3′ splice site. ESS3 inhibits splicing by blocking the formation of a functional spliceosome at an early step, since A complexes are not detected in the presence of ESS3. Competitor RNAs containing either ESS2 or ESS3 relieve inhibition of splicing of substrates containing ESS3 or ESS2. This suggests that a common cellular factor(s) may be required for the inhibition of tat mRNA splicing mediated by ESS2 and ESS3.  相似文献   

5.
J Zhu  A Mayeda  A R Krainer 《Molecular cell》2001,8(6):1351-1361
SR proteins recognize exonic splicing enhancer (ESE) elements and promote exon use, whereas certain hnRNP proteins bind to exonic splicing silencer (ESS) elements and block exon recognition. We investigated how ESS3 in HIV-1 tat exon 3 blocks splicing promoted by one SR protein (SC35) but not another (SF2/ASF). hnRNP A1 mediates silencing by binding initially to a required high-affinity site in ESS3, which then promotes further hnRNP A1 association with the upstream region of the exon. Both SC35 and SF2/ASF recognize upstream ESE motifs, but only SF2/ASF prevents secondary hnRNP A1 binding, presumably by blocking its cooperative propagation along the exon. The differential antagonism between a negative and two positive regulators exemplifies how inclusion of an alternative exon can be modulated.  相似文献   

6.
7.
Both cis elements and host cell proteins can significantly affect HIV-1 RNA processing and viral gene expression. Previously, we determined that the exon splicing silencer (ESS3) within the terminal exon of HIV-1 not only reduces use of the adjacent 3' splice site but also prevents Rev-induced export of the unspliced viral RNA to the cytoplasm. In this report, we demonstrate that loss of unspliced viral RNA export is correlated with the inhibition of 3' end processing by the ESS3. Furthermore, we find that the host factor Sam68, a stimulator of HIV-1 protein expression, is able to reverse the block to viral RNA export mediated by the ESS3. The reversal is associated with a stimulation of 3' end processing of the unspliced viral RNA. Our findings identify a novel activity for the ESS3 and Sam68 in regulating HIV-1 RNA polyadenylation. Furthermore, the observations provide an explanation for how Sam68, an exclusively nuclear protein, modulates cytoplasmic utilization of the affected RNAs. Our finding that Sam68 is also able to enhance 3' end processing of a heterologous RNA raises the possibility that it may play a similar role in regulating host gene expression.  相似文献   

8.
9.
The Rex regulatory proteins of human T-cell leukemia virus type I (HTLV-I) and bovine leukemia virus (BLV), and the Rev protein of human immunodeficiency virus type 1 (HIV-1), promote the cytoplasmic accumulation and translation of viral messenger mRNAs encoding structural proteins. Rev and Rex act through cis-acting elements on the viral RNA; these elements are named Rev- and Rex-responsive elements, or RRE and RXRE, respectively. We show that the Rex proteins of HTLV-I and BLV are interchangeable, but only the Rex protein of HTLV-I can substitute for Rev of HIV-1. Rex of HTLV-I and Rev of HIV-1 appear to act on RRE by similar mechanisms. Rev of HIV-1 does not act on the RXRE of HTLV-I or BLV. The nonreciprocal action of Rev and Rex suggests that these factors interact directly with the cis-acting RNA elements of the two viruses.  相似文献   

10.
11.
The guanosine-adenosine-rich exonic splicing enhancer (GAR ESE) identified in exon 5 of the human immunodeficiency virus type-1 (HIV-1) pre-mRNA activates either an enhancer-dependent 5′ splice site (ss) or 3′ ss in 1-intron reporter constructs in the presence of the SR proteins SF2/ASF2 and SRp40. Characterizing the mode of action of the GAR ESE inside the internal HIV-1 exon 5 we found that this enhancer fulfils a dual splicing regulatory function (i) by synergistically mediating exon recognition through its individual SR protein-binding sites and (ii) by conferring 3′ ss selectivity within the 3′ ss cluster preceding exon 5. Both functions depend upon the GAR ESE, U1 snRNP binding at the downstream 5′ ss D4 and the E42 sequence located between these elements. Therefore, a network of cross-exon interactions appears to regulate splicing of the alternative exons 4a and 5. As the GAR ESE-mediated activation of the upstream 3′ ss cluster also is essential for the processing of intron-containing vpu/env-mRNAs during intermediate viral gene expression, the GAR enhancer substantially contributes to the regulation of viral replication.  相似文献   

12.
13.
14.
15.
16.
A common feature of gene expression in all retroviruses is that unspliced, intron-containing RNA is exported to the cytoplasm despite the fact that cellular RNAs which contain introns are usually restricted to the nucleus. In complex retroviruses, the export of intron-containing RNA is mediated by specific viral regulatory proteins (e.g., human immunodeficiency virus type 1 [HIV-1] Rev) that bind to elements in the viral RNA. However, simpler retroviruses do not encode such regulatory proteins. Here we show that the genome of the simpler retrovirus Mason-Pfizer monkey virus (MPMV) contains an element that serves as an autonomous nuclear export signal for intron-containing RNA. This element is essential for MPMV replication; however, its function can be complemented by HIV-1 Rev and the Rev-responsive element. The element can also facilitate the export of cellular intron-containing RNA. These results suggest that the MPMV element mimics cellular RNA transport signals and mediates RNA export through interaction with endogenous cellular factors.  相似文献   

17.
The equine infectious anemia virus (EIAV) Rev protein (ERev) negatively regulates its own synthesis by inducing alternative splicing of its mRNA. This bicistronic mRNA contains four exons; exons 1 and 2 encode Tat, and exons 3 and 4 encode Rev. When Rev is expressed, exon 3 is skipped to produce an mRNA that contains only exons 1, 2, and 4. The interaction of ERev with its cis-acting RNA response element, the RRE, is also essential for nuclear export of intron-containing viral mRNAs that encode structural and enzymatic gene products. The primary ERev binding site and the manner in which ERev interacts with RNA or cellular proteins to exert its regulatory function have not been defined. We have performed in vitro RNA binding experiments to show that recombinant ERev binds to a 55-nucleotide, purine-rich tract proximal to the 5' splice site of exon 3. Because of its proximity to the 5' splice site and since it contains elements related to consensus exonic splicing enhancer sequences, we asked whether cellular proteins recognize the EIAV RRE. The cellular protein, ASF/SF2, a member of the serine- and arginine-rich family of splicing factors (SR proteins) bound to repeated sequences within the 55-nucleotide RRE region. Electrophoretic mobility shift and UV cross-linking experiments indicated that ERev and SR proteins bind simultaneously to the RRE. Furthermore, in vitro protein-protein interaction studies revealed an association between ERev and SR proteins. These data suggest that EIAV Rev-induced exon skipping observed in vivo may be initiated by simultaneous binding of Rev and SR proteins to the RRE that alter the subsequent assembly or catalytic activity of the spliceosomal complex.  相似文献   

18.
In humans, inclusion or exclusion of the fibronectin EDA exon is mainly regulated by a polypurinic enhancer element (exonic splicing enhancer [ESE]) and a nearby silencer element (exonic splicing silencer [ESS]). While human and mouse ESEs behave identically, mutations introduced into the homologous mouse ESS sequence result either in no change in splicing efficiency or in complete exclusion of the exon. Here, we show that this apparently contradictory behavior cannot be simply accounted for by a localized sequence variation between the two species. Rather, the nucleotide differences as a whole determine several changes in the respective RNA secondary structures. By comparing how the two different structures respond to homologous deletions in their putative ESS sequences, we show that changes in splicing behavior can be accounted for by a differential ESE display in the two RNAs. This is confirmed by RNA-protein interaction analysis of levels of SR protein binding to each exon. The immunoprecipitation patterns show the presence of complex multi-SR protein-RNA interactions that are lost with secondary-structure variations after the introduction of ESE and ESS variations. Taken together, our results demonstrate that the sequence context, in addition to the primary sequence identity, can heavily contribute to the making of functional units capable of influencing pre-mRNA splicing.  相似文献   

19.
The main function attributed to the Rev proteins of immunodeficiency viruses is the shuttling of viral RNAs containing the Rev responsive element (RRE) via the CRM-1 export pathway from the nucleus to the cytoplasm. This restricts expression of structural proteins to the late phase of the lentiviral replication cycle. Using Rev-independent gag-pol expression plasmids of HIV-1 and simian immunodeficiency virus and lentiviral vector constructs, we have observed that HIV-1 and simian immunodeficiency virus Rev enhanced RNA encapsidation 20- to 70-fold, correlating well with the effect of Rev on vector titers. In contrast, cytoplasmic vector RNA levels were only marginally affected by Rev. Binding of Rev to the RRE or to a heterologous RNA element was required for Rev-mediated enhancement of RNA encapsidation. In addition to specific interactions of nucleocapsid with the packaging signal at the 5' end of the genome, the Rev/RRE system provides a second mechanism contributing to preferential encapsidation of genomic lentiviral RNA.  相似文献   

20.
M Caputi  A Mayeda  A R Krainer    A M Zahler 《The EMBO journal》1999,18(14):4060-4067
Splicing of the human immunodeficiency virus type 1 (HIV-1) pre-mRNA must be inefficient to provide a pool of unspliced messages which encode viral proteins and serve as genomes for new virions. Negative cis-regulatory elements (exonic splicing silencers or ESSs) are necessary for HIV-1 splicing inhibition. We demonstrate that heterogeneous nuclear ribonucleoproteins (hnRNPs) of the A and B group are trans-acting factors required for the function of the tat exon 2 ESS. Depletion of hnRNP A/B proteins from HeLa cell nuclear extract activates splicing of tat exon 2 pre-mRNA substrate. Splicing inhibition is restored by addition of recombinant hnRNP A/B proteins to the depleted extract. A high-affinity hnRNP A1-binding sequence can substitute functionally for the ESS in tat exon 2. These results demonstrate that hnRNP A/B proteins are required for repression of HIV-1 splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号