首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In plants, yeast, and bacteria, cation/H+ exchangers (CAXs) have been shown to translocate Ca2+ and other metal ions utilizing the H+ gradient. The best characterized of these related transporters is the plant vacuolar localized CAX1. We have used site-directed mutagenesis to assess the impact of altering the seven histidine residues to alanine within Arabidopsis CAX1. The mutants were expressed in a Saccharomyces cerevisiae strain that is sensitive to Ca2+ and other metals. By utilizing a yeast growth assay, the H338A mutant was the only mutation that appeared to alter Ca2+ transport activity. The CAX1 His338 residue is conserved among various CAX transporters and may be located within a filter for cation selection. We proceeded to mutate His338 to every other amino acid residue and utilized yeast growth assays to estimate the transport properties of the 19 CAX mutants. Expression of 16 of these His338 mutants could not rescue any of the metal sensitivities. However, expression of H338N, H338Q, and H338K allowed for some growth on media containing Ca2+. Most interestingly, H338N exhibited increased tolerance to Cd2+ and Zn2+. Endomembrane fractions from yeast cells were used to measure directly the transport of H338N. Although the H338N mutant demonstrated 25% of the wild type Ca2+/H+ transport, it showed an increase in transport for both Cd2+ and Zn2+ reflected in a decrease in the Km for these substrates. This study provides insights into the CAX cation filter and novel mechanisms by which metals may be partitioned across membranes.  相似文献   

2.
We identified five cation/H(+) exchangers (CAX) from rice, and phylogenetically divided them into two clusters. Gene expression and absolute amounts of mRNA in different organs were analyzed by real-time PCR. OsCAX1a showed high expression in almost all organs. OsCAX1b and OsCAX1c were detected in a limited number of organs and their expression levels were very low. The mRNA levels of OsCAX2 and OsCAX3 varied with the organ. OsCAXs were heterologously expressed in yeast to characterize the ion transport activity. All exchangers, except for OsCAX2, conferred tolerance to calcium. OsCAX1a and OsCAX3 conferred tolerance to manganese. The diversity of expression sites and substrates suggest the broad range function of CAX.  相似文献   

3.
Molecular and Cellular Biochemistry - Insulin stimulates de novo lipid synthesis in the liver and in cultured hepatocytes via its ability to activate sterol regulatory element-binding protein 1c...  相似文献   

4.
The complexity of intracellular compartments in eukaryotic cells evolved to provide distinct environments to regulate processes necessary for cell proliferation and survival. A large family of predicted cation/proton exchangers (CHX), represented by 28 genes in Arabidopsis thaliana, are associated with diverse endomembrane compartments and tissues in plants, although their roles are poorly understood. We expressed a phylogenetically related cluster of CHX genes, encoded by CHX15-CHX20, in yeast and bacterial cells engineered to lack multiple cation-handling mechanisms. Of these, CHX16-CHX20 were implicated in pH homeostasis because their expression rescued the alkaline pH-sensitive growth phenotype of the host yeast strain. A smaller subset, CHX17-CHX19, also conferred tolerance to hygromycin B. Further differences were observed in K(+)- and low pH-dependent growth phenotypes. Although CHX17 did not alter cytoplasmic or vacuolar pH in yeast, CHX20 elicited acidification and alkalization of the cytosol and vacuole, respectively. Using heterologous expression in Escherichia coli strains lacking K(+) uptake systems, we provide evidence for K(+) ((86)Rb) transport mediated by CHX17 and CHX20. Finally, we show that CHX17 and CHX20 affected protein sorting as measured by carboxypeptidase Y secretion in yeast mutants grown at alkaline pH. In plant cells, CHX20-RFP co-localized with an endoplasmic reticulum marker, whereas RFP-tagged CHX17-CHX19 co-localized with prevacuolar compartment and endosome markers. Together, these results suggest that in response to environmental cues, multiple CHX transporters differentially modulate K(+) and pH homeostasis of distinct intracellular compartments, which alter membrane trafficking events likely to be critical for adaptation and survival.  相似文献   

5.
Unique topology of the internal repeats in the cardiac Na+/Ca2+ exchanger   总被引:1,自引:0,他引:1  
Hydropathy analysis predicts 11 transmembrane helices in the cardiac Na+/Ca2+ exchanger. Using cysteine susceptibility analysis and epitope tagging, we here studied the membrane topology of the exchanger, in particular of the highly conserved internal alpha-1 and alpha-2 repeats. Unexpectedly, we found that the connecting loop in the alpha-1 repeat forms a re-entrant membrane loop with both ends facing the extracellular side and one residue (Asn-125) being accessible from the inside and that the region containing the alpha-2 repeat is mostly accessible from the cytoplasm. Together with other data, we propose that the exchanger may consist of nine transmembrane helices.  相似文献   

6.
Guard cell movement is induced by environmental and hormonal signals that cause changes in turgor through changes in uptake or release of solutes and water. Several transporters mediating these fluxes at the plasma membrane have been characterized; however, less is known about transport at endomembranes. CHX20, a member of a poorly understood cation/H+ exchanger gene family in Arabidopsis (Arabidopsis thaliana), is preferentially and highly expressed in guard cells as shown by promoterbeta-glucuronidase activity and by whole-genome microarray. Interestingly, three independent homozygous mutants carrying T-DNA insertions in CHX20 showed 35% reduction in light-induced stomatal opening compared to wild-type plants. To test the biochemical function of CHX20, cDNA was expressed in a yeast (Saccharomyces cerevisiae) mutant that lacks Na+(K+)/H+ antiporters (Deltanhx1 Deltanha1 Deltakha1) and plasma membrane Na+ pumps (Deltaena1-4). Curiously, CHX20 did not enhance tolerance of mutants to moderate Na+ or high K+ stress. Instead, it restored growth of the mutant on medium with low K+ at slightly alkaline pH, but had no effect on growth at acidic pH. Green fluorescent protein-tagged CHX20 expressed in mesophyll protoplasts was localized mainly to membranes of the endosomal system. Furthermore, light-induced stomatal opening of the Arabidopsis mutants was insensitive to external pH and was impaired at high KCl. The results are consistent with the idea that, in exchanging K+ for H+, CHX20 maintains K+ homeostasis and influences pH under certain conditions. Together, these results provide genetic and biochemical evidence that one CHX protein plays a critical role in osmoregulation through K+ fluxes and possibly pH modulation of an active endomembrane system in guard cells.  相似文献   

7.
The brush border membrane of the proximal tubule contains two efflux pathways for organic cations from the cell to the tubular fluid: a P-glycoprotein and an organic cation/H+ exchanger. There is evidence that they transport many of the same substrates. Their structural relatedness is unknown and is the subject of this report. The experimental approach was to identify the exchanger with photoaffinity labeling reagents. The rationale was that if the P-glycoprotein and the organic cation/H+ exchanger transport many of the same substrates, then they might be photoaffinity labeled by the same reagents. [125I]Iodoarylazidoprazosin and [3H]azidopine are two reagents, which have been used, to photoaffinity label the P-glycoprotein. We found that several polypeptides were photolabeled in a time- and concentration-dependent manner. The photoincorporation into only two of these polypeptides (41 and 28 kDa) was blocked extensively by the presence of known substrates for the exchanger. The photoaffinity labeling of only the 41-kDa polypeptide was affected by treatment with the chemical reagents, N-ethylmaleimide and dithiothreitol, which are known to affect the exchanger reaction. The findings are consistent with the interpretation that a 41-kDa polypeptide is, or is a component of, the exchanger.  相似文献   

8.
Four isoforms of the Na+/H+ exchanger (NHE6-NHE9) are distributed to intracellular compartments in human cells. They are localized to Golgi and post-Golgi endocytic compartments as follows: mid- to trans-Golgi, NHE8; trans-Golgi network, NHE7; early recycling endosomes, NHE6; and late recycling endosomes, NHE9. No significant localization of these NHEs was observed in lysosomes. The distribution of these NHEs is not discrete in the cells, and there is partial overlap with other isoforms, suggesting that the intracellular localization of the NHEs is established by the balance of transport in and out of the post-Golgi compartments as the dynamic membrane trafficking. The overexpression of NHE isoforms increased the luminal pH of the compartments in which the protein resided from the mildly acidic pH to the cytosolic pH, suggesting that their in vivo function is to regulate the pH and monovalent cation concentration in these organelles. We propose that the specific NHE isoforms contribute to the maintenance of the unique acidic pH values of the Golgi and post-Golgi compartments in the cell.  相似文献   

9.
Chloride channel (CLC)-type Cl-/H+ exchangers are widespread throughout the biological world, and one of these, CLC-ec1 from Escherichia coli, has been extensively studied. The structure of this protein is known, and several of its mechanistic hot spots have been identified, but a mechanism for Cl-/H+ exchange has not previously been offered. We herein confirm by direct measurements of Cl- and H+ fluxes a Cl--to-H+ exchange stoichiometry of 2, and summarize experimental facts pertinent to the exchange mechanism. While the mechanism must involve a conformational cycle of alternating exposure of substrate-binding sites to the two sides of the membrane, CLC transporters do not adhere to a familiar ping-pong scheme in which the two ions bind in a mutually exclusive fashion. Instead, Cl- and H+ occupy the ion-binding region simultaneously. A conformational cycle is proposed that accounts for the exchange stoichiometry, several key mutants and the tendency of the protein to become uncoupled and allow 'slippage' of Cl-.  相似文献   

10.
Using split cardiac Na(+)/Ca(2+) exchangers (NCX1), we previously demonstrated that phospholemman (PLM) regulates NCX1 by interacting with the proximal linker domain (residues 218-358) of the intracellular loop of NCX1. With the use of overlapping loop deletion mutants, interaction sites are localized to two regions spanning residues 238-270 and residues 300-328 of NCX1. In this study, we used alanine (Ala) linker scanning to pinpoint the residues in the proximal linker domain involved in regulation of NCX1 by PLM. Transfection of human embryonic kidney (HEK)293 cells with wild-type (WT) NCX1 or its Ala mutants but not empty vector resulted in NCX1 current (I(NaCa)). Coexpression of PLM with WT NCX1 inhibited I(NaCa). Mutating residues 248-252 (PASKT) or 300-304 (QKHPD) in WT NCX1 to Ala resulted in loss of inhibition of I(NaCa) by PLM. By contrast, inhibition of I(NaCa) by PLM was preserved when residues 238-242, 243-247, 253-257, 258-262, 263-267, 305-309, 310-314, 315-319, 320-324, or 325-329 were mutated to Ala. While mutating residue 301 to alanine completely abolished PLM inhibition, mutation of any single residue 250-252, 300, or 302-304 resulted in partial reduction in inhibition. Mutating residues 248-252 to Ala resulted in significantly weaker association with PLM. The NCX1-G503P mutant that lacks Ca(2+)-dependent activation retained its sensitivity to PLM. We conclude that residues 248-252 and 300-304 in the proximal linker domain of NCX1 were involved in its inhibition by PLM.  相似文献   

11.
The (ouabain + bumetanide + EGTA)-insensitive K+ influx (defined as residual K+ influx) in the human erythrocyte was investigated with respect to the characterization of the recently identified K+(Na+)/H+ exchanger (Richter et al. 1997). In particular, the effects of selected ion transport inhibitors on this flux in physiological ionic strength (high ionic strength, HIS) as well as low ionic strength (LIS) solutions were qstudied. The stimulation of the K+ influx observed in LIS medium was further enhanced when DIDS, phloretin, eosin-5-maleimide, furosemide, DIOA, NPPB, or DCDPC was present at a concentration of 0.1 mmol/l. This paradoxical, inhibitor-induced increase of the K+ influx was more pronounced in LIS media where chloride (7.5 mmol/l) was replaced by nitrate. For DNDS, niflumic acid, and MK-196 (0.1 mmol/l) an enhanced K+ transport could only be observed in nitrate-containing LIS solution. Bumetanide and purine riboside, at a concentration of 0.1 mmol/l, did not cause significant changes of the K+ influx in either chloride- or nitrate-containing LIS media. Dipyridamole and ruthenium red (0.1 mmol/l), which are positively charged, significantly reduced the K+ influx in both chloride- and nitrate-containing LIS media. In nitrate-containing HIS solution only dipyridamole inhibited the K+ influx. The residual K+ influx in LIS solution was significantly increased by removing internal [Mg2+], and decreased by quinacrine (1 mmol/l). In HIS solution, no effect of altering intracellular Mg2+ occurred but a stimulation of the flux by quinacrine was observed. The results are discussed in terms of a more general surface charge effect of the used inhibitors on the K+(Na+)/H+ exchanger.  相似文献   

12.
The effect of the potent anticancer drug cisplatin, cis-diamminedichloroplatinum (II) (CDDP), on H+ -ATPase and Na+/H+ exchanger in rat renal brush-border membrane was examined. To measure H+ transport by vacuolar H+ -ATPase in renal brush-border membrane vesicles, we employed a detergent-dilution procedure, which can reorientate the catalytic domain of H+ -ATPase from an inward-facing configuration to outward-facing one. ATP-driven H+ pump activity decreased markedly in brush-border membrane prepared from rats two days after CDDP administration (5 mg/kg, i.p.). In addition, N-ethylmaleimide and bafilomycin A1 (inhibitors of vacuolar H+ -ATPase)-sensitive ATPase activity also decreased in these rats. The decrease in ATP-driven H+ pump activity was observed even at day 7 after the administration of CDDP. Suppression of ATP-driven H+ pump activity was also observed when brush-border membrane vesicles prepared from normal rats were pretreated with CDDP in vitro. In contrast with H+ -ATPase, the activity of Na+/H+ exchanger, which was determined by measuring acridine orange fluorescence quenching, was not affected by the administration of CDDP. These results provide new insights into CDDP-induced renal tubular dysfunctions, especially such as proximal tubular acidosis and proteinuria.  相似文献   

13.
Akhter S  Cavet ME  Tse CM  Donowitz M 《Biochemistry》2000,39(8):1990-2000
When expressed either in polarized epithelial cells or in fibroblasts, two Na(+)/H(+) exchanger isoforms, NHE1 and NHE3, have different subcellular distributions. Using a quantitative cell surface biotinylation technique, we found PS120 cells target approximately 90% of mature NHE1 but only 14% of NHE3 to the cell surface, and this pattern occurs irrespective of NHE protein expression levels. In this study, we examined surface fractions of NHE3 C-terminal truncation mutants to identify domains involved in the targeting of NHE3. Removing the C-terminal 76 amino acids doubled surface fractions to 30% of total and doubled the V(max) from 1300 to 2432 microM H(+)/s. Removal of another 66 amino acids increased surface levels to 55% of total with an increase in the V(max) to 5794 microM H(+)/s. Surface fractions did not change with a further 105 amino acid truncation. We postulated that inhibition of the basal recycling of NHE3 could result in the surface accumulation of the NHE3 truncations. Accordingly, we found that, unlike wild-type NHE3, the truncations were shown to internalize poorly and were not affected by PI3 kinase inhibition. However, while the truncations demonstrated reduced basal recycling, they retained the same serum response as full-length NHE3, with a mobilization of approximately 10% of total NHE to the surface. We conclude that basal recycling of NHE3 is controlled by endocytic determinants contained within its C-terminal 142 amino acids and that serum-mediated exocytosis is independently regulated through a different part of the protein.  相似文献   

14.
Na+-inhibitory sites of the Na+/H+ exchanger are Li+ substrate sites   总被引:1,自引:0,他引:1  
Amiloride-inhibitable Li+ influx in dog red blood cells is mediated by the Na+/H+ exchanger, NHE. However, there are substantial differences between the properties of Li+ transport and Na+ transport through the NHE. Li+ influx is activated by cell shrinkage, and Na+ influx is not, as we reported previously (Dunham PB, Kelley SJ, and Logue PJ. Am J Physiol Cell Physiol 287: C336-C344, 2004). Li+ influx is a sigmoidal function of its concentration, and Na+ activation is linear at low Na+ concentrations. Li+ does not inhibit its own influx; in contrast, Na+ inhibits Na+ influx. Li+ prevents this inhibition by Na+. Na+ is a mixed or noncompetitive inhibitor of Li+ influx, implying that both a Na+ and a Li+ can be bound at the same time. In contrast, Li+ is a competitive inhibitor of Na+ influx, suggesting Li+ binding at one class of sites on the transporter. Because the properties of Li+ transport and Na+ transport are different, a simple explanation is that Na+ and Li+ are transported by separate sites. The similarities of the properties of Li+ transport and the inhibition of Na+ transport by Na+ suggest that Li+ is transported by the Na+-inhibitory sites.  相似文献   

15.
K+-dependent Na+-Ca2+ exchangers (NCKXs) play an important role in Ca2+ homeostasis in many tissues. NCKX proteins are bi-directional plasma membrane Ca2+-transporters which utilize the inward Na+ and outward K+ gradients to move Ca2+ ions into and out of the cytosol (4Na+:1Ca2+ + 1 K+). In this study, we carried out scanning mutagenesis of all the residues of the highly conserved α-1 and α-2 repeats of NCKX2 to identify residues important for K+ transport. These structural elements are thought to be critical for cation transport. Using fluorescent intracellular Ca2+-indicating dyes, we measured the K+ dependence of transport carried out by wildtype or mutant NCKX2 proteins expressed in HEK293 cells and analyzed shifts in the apparent binding affinity (Km) of mutant proteins in comparison with the wildtype exchanger. Of the 93 residue substitutions tested, 34 were found to show a significant shift in the external K+ ion dependence of which 16 showed an increased affinity to K+ ions and 18 showed a decreased affinity and hence are believed to be important for K+ ion binding and transport. We also identified 8 residue substitutions that resulted in a partial loss of K+ dependence. Our biochemical data provide strong support for the cation binding sites identified in a homology model of NCKX2 based on crystal structures reported for distantly related archaeal Na+-Ca2+ exchanger NCX_Mj. In addition, we compare our results here with our previous studies that report on residues important for Ca2+ and Na+ binding. Supported by CIHR MOP-81327.  相似文献   

16.
Arabidopsis plastid antiporters KEA1 and KEA2 are critical for plastid development, photosynthetic efficiency, and plant development. Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles (PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1 (VSR1) subcellular localizations, VSR–cargo interactions, and p24 distribution on the endoplasmic reticulum (ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+ homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+ homeostasis.  相似文献   

17.
Previous results suggested that specific point mutations in human anion exchanger 1 (AE1) convert the electroneutral anion exchanger into a monovalent cation conductance. In the present study, the transport site for anion exchange and for the cation leak has been studied by cysteine scanning mutagenesis and sulfhydryl reagent chemistry. Moreover, the role of some highly conserved amino acids within members of the SLC4 family to which AE1 belongs has been assessed in AE1 transport properties. The results suggest that the same transport site within the AE1 spanning domain is involved in anion exchange or in cation transport. A functioning mechanism for this transport site is proposed according to transport properties of the different studied point mutations of AE1.  相似文献   

18.
19.
CLC-ec1 is a prokaryotic CLC-type Cl(-)/H+ exchange transporter. Little is known about the mechanism of H+ coupling to Cl-. A critical glutamate residue, E148, was previously shown to be required for Cl(-)/H+ exchange by mediating proton transfer between the protein and the extracellular solution. To test whether an analogous H+ acceptor exists near the intracellular side of the protein, we performed a mutagenesis scan of inward-facing carboxyl-bearing residues and identified E203 as the unique residue whose neutralization abolishes H+ coupling to Cl- transport. Glutamate at this position is strictly conserved in all known CLCs of the transporter subclass, while valine is always found here in CLC channels. The x-ray crystal structure of the E203Q mutant is similar to that of the wild-type protein. Cl- transport rate in E203Q is inhibited at neutral pH, and the double mutant, E148A/E203Q, shows maximal Cl- transport, independent of pH, as does the single mutant E148A. The results argue that substrate exchange by CLC-ec1 involves two separate but partially overlapping permeation pathways, one for Cl- and one for H+. These pathways are congruent from the protein's extracellular surface to E148, and they diverge beyond this point toward the intracellular side. This picture demands a transport mechanism fundamentally different from familiar alternating-access schemes.  相似文献   

20.
In this study we characterized regulation of the Na+/H+ exchanger promoter in several tissue types. A conserved poly (dA:dT) region was important in regulation of the promoter. Nuclear extracts from rat myocardium and from mouse proximal tubule cells protected the poly (dA:dT) region of the NHE1 promoter. A protein from nuclear extracts also bound to the poly (dA:dT) element in gel mobility shift binding assays. The binding was specific and was removed by mutations in the poly (dA:dT) region. Characterization of the binding to the poly (dA:dT) region in gel mobility shift assays showed that it was reduced by high concentrations of the divalent cations Mg++ and Mn++. The inhibition by divalent cations was reduced by decreasing the pH of the binding assay. N-terminal sequencing of the poly (dA:dT) binding protein showed that it was a member of the HMG (high mobility group) family of nuclear proteins which are important in cell growth and proliferation. The results are the first direct detection of a protein that regulates the NHE1 promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号