首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4 serves as a receptor for major histocompatibility complex class II antigens and as a receptor for the human immunodeficiency virus type 1 (HIV-1) viral coat protein gp120. It is coupled to the protein-tyrosine kinase p56lck, an interaction necessary for an optimal response of certain T cells to antigen. In addition to the protein-tyrosine kinase domain, p56lck possesses Src homology 2 and 3 (SH2 and SH3) domains as well as a unique N-terminal region. The mechanism by which p56lck generates intracellular signals is unclear, although it has the potential to interact with various downstream molecules. One such downstream target is the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase), which has been found to bind to activated pp60src and receptor-tyrosine kinases. In this study, we verified that PI 3-kinase associates with the CD4:p56lck complex as judged by the presence of PI 3-phosphate generated from anti-CD4 immunoprecipitates and detected by high-pressure liquid chromatographic analysis. However, surprisingly, CD4-p56lck was also found to associate with another lipid kinase, phosphatidylinositol 4-kinase (PI 4-kinase). The level of associated PI 4-kinase was generally higher than PI 3-kinase activity. HIV-1 gp120 and antibody-mediated cross-linking induced a 5- to 10-fold increase in the level of CD4-associated PI 4- and PI 3-kinases. The use of glutathione S-transferase fusion proteins carrying Lck-SH2, Lck-SH3, and Lck-SH2/SH3 domains showed PI 3-kinase binding to the SH3 domain of p56lck, an interaction facilitated by the presence of an adjacent SH2 domain. PI 4-kinase bound to neither the SH2 nor the SH3 domain of p56lck. CD4-p56lck contributes PI 3- and PI 4-kinase to the activation process of T cells and may play a role in HIV-1-induced immune defects.  相似文献   

2.
p56lck, a lymphocyte-specific member of the src family of cytoplasmic protein-tyrosine kinases, is associated noncovalently with the cell surface glycoproteins CD4 and CD8, which are expressed on functionally distinct subpopulations of T cells. Using transient coexpression of p56lck with CD4 or CD8 alpha in COS-7 cells, we show that the unique N-terminal region of p56lck binds to the membrane-proximal 10 and 28 cytoplasmic residues of CD8 alpha and CD4, respectively. Two cysteine residues in each of the critical sequences in CD4, CD8 alpha, and p56lck are required for association. Our results suggest a novel role for cysteine-mediated interactions between unrelated proteins and provide a model for the association of other src-like cytoplasmic kinases with transmembrane proteins.  相似文献   

3.
A sensitive, automated, and nonisotopic assay for protein-tyrosine kinases and phosphatases has been developed. The assay uses commercially available antiphosphotyrosine monoclonal antibodies and the recently developed particle concentration immunofluorescence immunoassay technology. The assay is specific for phosphotyrosine residues, can be performed faster, and is at least 100-fold more sensitive than the current standard filter type radioassay. Myelin basic protein and a synthetic peptide corresponding to the autophosphorylation site of p56lck performed equally well in the detection of p56lck kinase activity. Myelin basic protein phosphorylated on tyrosine residues by p56lck was successfully used as substrate in the detection of phosphatase activity and vanadate or molybdate were shown to inhibit the phosphatase activity. The assay is particularly useful for the rapid detection of enzyme activities in column fractions from biochemical procedures steps and also for screening of large numbers of potential inhibitors or activators of protein-tyrosine kinases and phosphatases.  相似文献   

4.
The protein-tyrosine kinase p56lck exhibits a restricted substrate specificity in vitro but can efficiently phosphorylate bovine myelin basic protein (MBP). Results obtained from both peptide mapping and fast atom bombardment mass spectrometry indicate that tyrosine 67 in the sequence -Thr-Thr-His-Tyr67-Gly-Ser-Leu-Pro-Gln-Lys- in bovine MBP is the specific phosphorylation site. p56lck does not phosphorylate the acidic, cytoplasmic domain of erythrocyte band 3. In contrast, p40, another protein-tyrosine kinase purified from bovine thymus that readily phosphorylates band 3, does not phosphorylate MBP. Therefore, MBP and band 3 may prove to be useful substrates for distinguishing between various tyrosine kinases on the basis of substrate specificity. In addition, identification of the recognition sequence in MBP for p56lck may contribute to an understanding of the structural features of physiological substrates for this kinase.  相似文献   

5.
To understand the mechanism of p56lck protein downregulation observed in human T cells infected by human T-cell leukemia virus type 1 (HTLV-1), we have investigated the ability of the 3' end of the HTLV-1 genome as well as that of the tax and rex genes to modulate p56lck protein expression and p56lck mRNA synthesis. By using Jurkat T cells stably transfected with constructs that expressed either the 3' end of the HTLV-1 genome (JK C11-pMTEX), the tax gene (JK52-Tax) or the rex gene (JK9-Rex), we found that the expression of p40tax (Tax) was sufficient to modulate p56lck protein expression. Similarly, we found that the expression of the mRNA which encoded p56lck was repressed in Jurkat T cells which expressed Tax. This downregulation was shown to be proportional to the amount of tax mRNA found in the transfected cells, as evidenced by experiments that used cells (JPX-9) stably transfected with a tax gene driven by a cadmium-inducible promoter. Furthermore, cadmium induction of Tax in JPX-9 cells transiently transfected with a construct containing the chloramphenicol acetyltransferase (CAT) gene under control of the lck distal promoter (lck DP-CAT) resulted in the downregulation of CAT gene expression. In contrast, cadmium induction of Tax in JPX-9 cells transiently transfected with a CAT construct driven by a lck DP with a deletion extending from position -259 to -253 (a sequence corresponding to a putative E-Box) did not modulate CAT gene expression, suggesting that the effect of Tax on p56lck is mediated through an E-Box binding protein.  相似文献   

6.
The CD4 and CD8 antigens on the surface of T cells appear to bind to major histocompatibility complex (MHC) class II and I antigens, respectively. These receptors have also been found to regulate T cell growth in a manner independent of MHC recognition. In this report, we describe recent work showing that the CD4 and CD8 receptors are coupled to a protein-tyrosine kinase, p56lck, from T lymphocytes. The p56lck protein is a member of the src family, which plays a crucial role in the activation and transformation of various mammalian cells. The CD4/CD8:p56lck complex is catalytically active as shown by its ability to phosphorylate at 55-60 kDa. Two-dimensional, nonequilibrium gel electrophoresis demonstrated the similarity of p56lck associated with the CD4 and CD8 antigens. Detergents were found to vary in their ability to solubilize the CD4:p56lck complex in a catalytically active form. We further demonstrated by in vitro phosphorylation that members of the CD3 complex including the gamma, delta, and epsilon chains, as well as a putative zeta subunit can be phosphorylated at tyrosyl residues by the CD4/CD8:p56lck complex. Thus, this interaction may play an important role in the activation of T cells, and may mediate the cooperative interaction between the CD4/CD8 antigens and the Ti(TcR)/CD3 complex. This interaction also represents a possible precedent by which other members of the src family (c-src, c-yes, c-fgr, etc.) may be found to interact with mammalian growth receptors.  相似文献   

7.
Inhibition of p56(lck) tyrosine kinase by isothiazolones   总被引:1,自引:0,他引:1  
Lck encodes a 56-kDa protein-tyrosine kinase, predominantly expressed in T lymphocytes, crucial for initiating T cell antigen receptor (TCR) signal transduction pathways, culminating in T cell cytokine gene expression and effector functions. As a consequence of a high-throughput screen for selective, novel inhibitors of p56(lck), an isothiazolone compound was identified, methyl-3-(N-isothiazolone)-2-thiophenecarboxylate(A-125800), which inhibits p56(lck) kinase activity with IC50 = 1-7 microM. Under similar assay conditions, the isothiazolone compound was equipotent in blocking the ZAP-70 tyrosine kinase activity but was 50 to 100 times less potent against the catalytic activities of p38 MAP kinase and c-Jun N-terminal kinase 2alpha. A-125800 blocked activation-dependent TCR tyrosine phosphorylation and intracellular calcium mobilization in Jurkat T cells (IC50 = 35 microM) and blocked T cell proliferation in response to alloantigen (IC50 = 14 microM) and CD3/CD28-induced IL-2 secretion (IC50 = 2.2 microM) in primary T cell cultures. Inhibition of p56(lck )by A-125800 was dose- and time-dependent and was irreversible. A substitution of methylene for the sulfur atom in the isothiazolone ring of the compound completely abrogated the ability to inhibit p56(lck) kinase activity and TCR-dependent signal transduction. Incubation with thiols such as beta-ME or DTT also blocked the ability of the isothiazolone to inhibit p56(lck) kinase activity. LC/MS analysis established the covalent modification of p56(lck) at cysteine residues 378, 465, and 476. Together these data support an inhibitory mechanism, whereby cysteine -SH groups within the p56(lck) catalytic domain react with the isothiazolone ring, leading to ring opening and disulfide bond formation with the p56(lck) enzyme. Loss of p56(lck) activity due to -SH oxidation has been suggested to play a role in the pathology of AIDS. Consequently, a similar mechanism of sulfhydryl oxidation leading to p56(lck) inhibition, described in this report, may occur in the intact T cell and may underlie certain T cell pathologies.  相似文献   

8.
CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration.  相似文献   

9.
p56lck, a member of the src family of non-receptor protein tyrosine kinases (PTKs), is expressed predominantly in T-lymphocytes. Association of p56lck with CD4 and CD8 T-cell receptor (TcR) accessory molecules suggests that p56lck may play a specialized role in antigen-induced T-cell activation. CD4 and CD8 molecules are known to stabilize the interaction between TcR and the major histocompatibility complex during T-cell activation. To examine the role of p56lck in the dynamics of the CD4 molecule, p56lck-expressing transfectant cell clones were prepared by the transfection of an lck-gene plasmid containing an inducible promoter into a CD4+lck- human monocytoid cell line. When these transfectant cells were stimulated with phorbol ester, CD4 internalization on these p56lck-expressing cell lines was selectively and markedly retarded, as compared to p56lck-negative control cell lines. When cell-surface CD4 and intracellular CD4 were selectively precipitated after stimulation, the intracellular CD4 molecules were dissociated from p56lck whereas the surface-retained CD4 molecules were still associated with p56lck. Moreover, the dissociation of p56lck from CD4 appeared to occur prior to the PMA-induced internalization of CD4. These data indicate that p56lck regulates the PMA-induced internalization of CD4 possibly via its association with CD4. Treatment with genistein, a PTK inhibitor, revealed that the PTK activity of p56lck might not be involved in this regulatory effect of p56lck on CD4 internalization.  相似文献   

10.
Piceatannol (3,4,3'5'-tetrahydroxy-trans-stilbene), a plant secondary natural product that had previously been identified as an antileukemic principle, has been shown to be an inhibitor of protein-tyrosine kinase activity. Piceatannol inhibits the purified thymocyte protein-tyrosine kinase, p40, by competing for the peptide or protein substrate binding site (Ki = 15 microM). Piceatannol also inhibits the activity of the p56lck protein-tyrosine kinase measured either in LSTRA cell membranes or in intact cells. In contrast, piceatannol does not inhibit the activity of the cAMP-dependent protein kinase.  相似文献   

11.
Incubation of the human T cells, Jurkat, with two sets of activating anti-CD2 mAb (T11(2) + T11(3), D66 + T11(1)) induced delocalization of p56lck and CD2 receptors from the plasma membrane and increased the tyrosine kinase activity of p56lck. The anti-CD2 mAb combination (T11(2) + T11(3)) that produced the most rapid increase in p56lck kinase activity also induced the most rapid delocalization of the kinase. In stimulated cells, both p56lck and CD2 receptors are detected in cytoplasmic vesicles. The internalization of p56lck in endocytic vesicles was established by confocal microscopy. By double staining it was shown that only part of the p56lck colocalized with the internalized CD2 receptor suggesting distinct sorting processes. Internalization of p56lck appeared to be specific of CD2 stimulation as: 1) in Jurkat cells triggered with an anti-CD3 mAb, p56lck was not internalized whereas CD3 receptors were completely endocytosed; 2) when cells were stimulated via CD4, the kinase and CD4 receptors remained associated with the plasma membrane. In addition, internalization of p56lck upon stimulation of CD2 receptors was not modified in CD2+/CD3-Jurkat cells indicating that CD3 is not involved in this process. The identification of different subcellular localizations of p56lck in resting and stimulated T cells should represent an important step in the definition of its functional activity.  相似文献   

12.
CCR5 and CXC chemokine receptor 4 (CXCR4) are coreceptors for CD4 as defined by HIV-1 glycoprotein (gp) 120 binding. Pretreatment of T cells with gp120 results in modulation of both CCR5 and CXCR4 responsiveness, which is dependent upon p56(lck) enzymatic activity. The recent findings that pretreatment of T cells with a natural CD4 ligand, IL-16, could alter cellular responsiveness to macrophage-inflammatory protein-1ss (MIP-1ss) stimulation, prompted us to investigate whether IL-16 could also alter CXCR4 signaling. These studies demonstrate that IL-16/CD4 signaling in T lymphocytes also results in loss of stromal derived factor-1alpha (SDF-1alpha)/CXCR4-induced chemotaxis; however, unlike MIP-1ss/CCR5, the effects were not reciprocal. There was no effect on eotaxin/CCR3-induced chemotaxis. Desensitization of CXCR4 by IL-16 required at least 10-15 min pretreatment; no modulation of CXCR4 expression was observed, nor was SDF-1alpha binding altered. Using murine T cell hybridomas transfected to express native or mutated forms of CD4, it was determined that IL-16/CD4 induces a p56(lck)-dependent inhibitory signal for CXCR4, which is independent of its tyrosine catalytic activity. By contrast, IL-16/CD4 desensitization of MIP-1ss/CCR5 responses requires p56(lck) enzymatic activity. IL-16/CD4 inhibition of SDF-1alpha/CXCR4 signals requires the presence of the Src homology 3 domain of p56(lck) and most likely involves activation of phosphatidylinositol-3 kinase. These studies indicate the mechanism of CXCR4 receptor desensitization induced by a natural ligand for CD4, IL-16, is distinct from the inhibitory effects induced by either gp120 or IL-16 on CCR5.  相似文献   

13.
p56lck and p60c-src are closely related protein-tyrosine kinases that are activated by similar oncogenic mutations. We have used fibroblast cell lines that express p56lck from introduced DNA molecules to compare the subcellular localizations of p60c-src and p56lck and their abilities to bind polyomavirus middle T antigen (mT). p56lck is associated with the detergent-insoluble matrix, as defined by extraction with solutions containing nonionic detergents, whereas p60c-src is soluble under these conditions. p56lck is also associated with detergent-insoluble structures in a lymphoid cell line, LSTRA. p60c-src binds to mT, but p56lck does not bind detectably. In terms of both solubility and mT interactions, the nononcogenic p56lck more closely resembles oncogenically activated p60c-src mutants than it resembles p60c-src. Because published results show that an intact carboxy terminus is required for p60c-src to bind mT and be soluble, we tested whether the different localization and mT binding properties of p56lck and p60c-src were dictated by their different carboxy termini. A protein consisting largely of p60c-src sequences but carrying a p56lck carboxy terminus was soluble and bound to mT. We suggest that both the solubility and mT-binding properties of p60c-src not only require sequences common to the carboxy termini of p60c-src and p56lck, but also require sequences unique to the body of p60c-src.  相似文献   

14.
A newly isolated T-cell line (CB1) derived from a T-acute lymphoblastic leukaemia (T-ALL) patient contained cells (40% of total) which did not express the CD45 phosphotyrosine phosphatase. The cells were sorted into CD45- and CD45+ populations and shown to be clonal in origin. T-cell receptor (TCR) cross-linking or coligation of the TCR with its CD4/CD8 co-receptors induced tyrosine phosphorylation and calcium signals in CD45+ but not in CD45- cells. Unexpectedly, whole cell p56lck and p59fyn tyrosine kinase activities were not reduced in CD45- compared to CD45+ cells. A novel technique was therefore developed to isolated specific pools of aggregated receptors expressed at the cell surface, together with their associated tyrosine kinases. Using this technique it was shown that cell surface CD4-p56lck kinase activity was 78% lower in CD45- than in CD45+ cells. Phosphorylation of TCR zeta- and gamma-chains occurred in TCR immunocomplexes from CD45+ but not CD45- cells, despite comparable levels of p59fyn and TCR proteins. Furthermore, TCR-associated tyrosine kinase activity towards an exogenous substrate was 84% lower in CD45- than in CD45+ cells. Addition of recombinant p59fyn to TCR immunocomplexes isolated from CD45-cells restored the phosphorylation of the TCR zeta- and gamma-chains. Our results demonstrate that CD45 selectively regulates the pools of p59fyn and p56lck kinases which are associated with the TCR and CD4 at the cell surface. Activation by CD45 of these receptor-associated kinase pools correlates with the ability of the TCR and its coreceptors to couple to intracellular signalling pathways.  相似文献   

15.
We have previously described a gene named tkl (tyrosine kinase related to lck). It belongs to the src family of protein-tyrosine kinases and among these it has significant homology to the lck gene (lymphoide cell kinase). The tkl gene product may represent the avian homolog of Lck, which is believed to participate in a lymphocyte-specific signal transduction pathway by association with a membrane receptor. To study the biochemical properties of the protein, a nearly complete tkl gene (isolated from a cDNA library from chicken spleen cells) was expressed in a baculovirus system. Approximately 10% of the extracted protein consisted of the soluble 51-kDa Tkl protein (p51tkl) at 40 h post-infection. This protein was found to be phosphorylated on tyrosine and serine residues at a ratio of 5:1. As expected, glycosylation or myristoylation could not be detected. Immunocomplex kinase assays indicated strong autophosphorylation of p51tkl at tyrosine residues and phosphorylation of exogenous substrates such as D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histones H2b and H4, and casein. This protein-tyrosine kinase activity also exhibited a marked preference for Mn2+ compared to Mg2+. The high level expression of enzymatically active Tkl should provide an excellent tool to further study the biological functions of this class of enzymes.  相似文献   

16.
The antagonists for the SH2 domain are regarded as novel therapeutic candidates for cancer, autoimmune disease, and chronic inflammatory disease. Previously, we identified rosmarinic acid (alpha-o-caffeoyl-3,4-dihydroxyphenyl-lactic acid; RosA) from Prunella vulgaris as an antagonist for the p56lck SH2 domain by screening natural products. RosA not containing phosphotyrosine surrogate had a considerable inhibitory activity for T-cell antigen receptor (TCR)-induced interleukin (IL)-2 expression, and subsequent T-cell proliferation in vitro cell assay. To investigate the structure-activity relationship of RosA and to identify a novel p56lck SH2 antagonist with more potent in vitro T-cell inhibitory activity, we synthesized several analogs of RosA by using rational design. All synthesized compounds were tested in vitro binding activity for the SH2 domain and in vitro T-cell inhibitory activity. All four hydroxyl groups of RosA were essential for binding with the p56lck SH2 domain and T-cell inhibitory activity. Unexpectedly, conformationally less constrained analogs 4 and 9 showed a more potent binding affinity for the SH2 domain than that of RosA, and chirality of the analog did not play an important role in protein binding. We successfully identified several RosA analogs with a more potent T-cell inhibitory activity than that of RosA. Overall results revealed important structural requirements of the p56lck SH2 antagonists for in vitro T-cell inhibitory activity and in vitro protein binding activity.  相似文献   

17.
Many of the Src-like tyrosine kinases are thought to participate in multiprotein complexes that modulate transmembrane signalling through tyrosine phosphorylation. We have used in vitro binding studies employing bacterially expressed glutathione S-transferase-p56lck fusion proteins and cell extracts to map regions on p56lck that are involved in binding to phosphatidylinositol 3'-kinase (PI3K). Deletions within the SH3 domain of p56lck abolished binding of PI3K activity from T-cell lysates, whereas deletion of the SH2 domain caused only a slight reduction in the level of PI3K activity bound to p56lck sequences. The binding of PI3K from T-cell extracts to p56lck was not blocked by antiphosphotyrosine antibodies, but p56lck-bound PI3K activity was sensitive to phosphatase treatment. The SH3 domain of p56lck also bound the majority of PI3K activity from uninfected chicken embryo fibroblasts. However, a drastically different binding specificity was observed with use of extracts of Rous sarcoma virus v-src-transformed cells, in which the majority of PI3K activity bound to the SH2 domain of p56lck in a phosphotyrosine-dependent manner. These results suggest that are two modes of PI3K binding to p56lck, and presumably to other Src-like tyrosine kinases. In one mode, PI3K from T cells or uninfected chicken embryo fibroblasts binds predominantly to the SH3 domain of p56lck. In the other mode, involving PI3K from Rous sarcoma virus-transformed cells, binding is largely phosphotyrosine dependent and requires the SH2 domain of p56lck.  相似文献   

18.
p56lck, a lymphocyte-specific tyrosine protein kinase, binds to the cytoplasmic tails of the T-cell surface molecules CD4 and CD8. Cross-linking of CD4 expressed on the surface of murine thymocytes, splenocytes, and CD4+ T-cell lines induced tyrosine phosphorylation of p56lck dramatically. Cross-linking of CD8 stimulated tyrosine phosphorylation of p56lck strongly in murine L3 and GA4 cells, slightly in splenocytes, but not detectably in thymocytes. Differing effects of cross-linking on in vitro tyrosine kinase activity of p56lck were observed. An increase in the in vitro kinase activity of p56lck, when assayed with [Val5]-angiotensin II as an exogenous substrate, was found to accompany cross-linking of CD4 in three cell lines. No stimulation of the in vitro kinase activity, however, was observed after cross-linking of CD8 in L3 cells. The phosphorylation of p56lck at Tyr-394, the autophosphorylation site, was stimulated by cross-linking in all cell lines examined. Tyr-394 was the predominant site of increased tyrosine phosphorylation in two leukemic cell lines. In the other two cell lines, the phosphorylation of both Tyr-394 and an inhibitory site, Tyr-505, was found to increase. In contrast to cross-linking with antibodies, no striking increase in the tyrosine phosphorylation of p56lck was stimulated by antigenic stimulation. Therefore, the effect of antibody-induced aggregation of CD4 and CD8 on the tyrosine phosphorylation of p56lck differs, at least quantitatively, from what occurs during antigen-induced T-cell activation.  相似文献   

19.
M Barry  S F Lee  L Boshkov    G McFadden 《Journal of virology》1995,69(9):5243-5251
Myxoma virus is a pathogenic poxvirus that induces extensive dysregulation of cellular immunity in infected European rabbits. Infection of a rabbit CD4+ T-cell line (RL-5) with myxoma virus results in dramatic reductions of cell surface levels of CD4 as monitored by flow cytometry. The virus-induced downregulation of CD4 requires early but not late viral gene expression and could not be inhibited by staurosporine, an inhibitor of protein kinase C, which effectively blocks phorbol 12-myristate-13-acetate-induced downregulation of CD4. The decrease in total cellular levels of CD4 during myxoma virus infection could be inhibited by the lysosomotrophic agent NH4Cl, suggesting a lysosomal fate for CD4 during myxoma virus infection. Steady-state levels of the CD4-associated protein tyrosine kinase p56lck remained unchanged during myxoma virus infection, suggesting that p56lck dissociates from CD4 prior to CD4 degradation in virus infected cells. Total p56lck kinase activity was unaffected during myxoma virus infection, although the amount of p56lck physically associated with CD4 declined in parallel with the loss of CD4. Thus, myxoma virus infection of CD4+ T lymphocytes triggers CD4 downregulation via a protein kinase C-independent pathway, causing the dissociation of p56lck and the degradation of CD4 in lysosomal vesicles.  相似文献   

20.
Protein tyrosine kinases participate in the transduction and modulation of signals that regulate proliferation and differentiation of cells. Excessive or deregulated protein tyrosine kinase activity can cause malignant transformation. The catalytic activity of the T cell protein tyrosine kinase p56lck is normally suppressed by phosphorylation of a carboxyl-terminal tyrosine, Tyr-505, by another cellular protein tyrosine kinase. Here we characterize a human cytosolic 50 kDa protein tyrosine kinase, p50csk, which specifically phosphorylates Tyr-505 of p56lck and a synthetic peptide containing this site. Phosphorylation of Tyr-505 suppressed the catalytic activity of p56lck. We suggest that p50csk negatively regulates p56lck, and perhaps other cellular src family kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号