首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microbial secondary metabolite, arisostatins A (As-A), was originally discovered as a substance carrying the antibiotic activity against Gram-positive bacteria and shown to possess potent anti-tumor properties. The mechanism by which arisostatins A initiates apoptosis remains poorly understood. In the present report we investigated the effect of arisostatins A on activation of the apoptotic pathway in HN-4 cells. Arisostatins A was shown to be responsible for the inhibition of HN-4 cell growth by inducing apoptosis. Treatment with 4 microM arisostatins A for 24h produced morphological features of apoptosis and DNA fragmentation in HN-4 cells. Arisostatins A caused dose-dependent apoptosis and DNA fragmentation of HN-4 cells used as a model. Treatment with caspase inhibitor significantly reduced the arisostatins A-induced caspase 3 activation. In addition, arisostatins A-induced apoptosis was associated with the generation of reactive oxygen species (ROS), which was prevented by an antioxidant NAC (N-acetyl-cysteine). These data indicate that cytotoxic effect of arisostatins A on HN-4 cells is attributable to the induced apoptosis and that arisostatins A-induced apoptosis is mediated by caspase-3 activation pathway, loss of mitochondrial transmembrane potential (DeltaPsi(m)), and release of cytochrome c into cytosol.  相似文献   

2.
Duval I  Brochu V  Simard M  Beaulieu C  Beaudoin N 《Planta》2005,222(5):820-831
Thaxtomin A is the main phytotoxin produced by Streptomyces scabiei, the causative agent of common scab disease of potato. Pathogenicity of S. scabiei is dependent on the production of thaxtomin A which is required for the development of disease symptoms, such as growth inhibition and cell death. We investigated whether thaxtomin A-induced cell death was similar to the hypersensitive cell death that often occurs in response to specific pathogens or phytotoxins during the so-called hypersensitive response (HR). We demonstrated that thaxtomin A induced in Arabidopsis thaliana suspension-cultured cells a genetically controlled cell death that required active gene expression and de novo protein synthesis, and which involved fragmentation of nuclear DNA, a characteristic hallmark of apoptosis. The thaxtomin A-induced form of programmed cell death (PCD) was not a typical HR, since defence responses generally preceding or associated with the HR, such as rapid medium alkalization, oxidative burst and expression of defence-related genes PR1 and PDF1.2, were not observed in plant cells following addition of thaxtomin A. Thaxtomin A has been shown to inhibit cellulose biosynthesis (Scheible et al. in Plant Cell 15:1781, 2003). We showed that isoxaben, a specific inhibitor of cellulose biosynthesis, also induced in Arabidopsis cell suspensions a PCD similar to that induced by thaxtomin A. These data suggested that rapid changes in the plant cell wall composition and organization can induce PCD in plant cells. We discuss how rapid inhibition of cellulose biosynthesis may trigger this process.  相似文献   

3.
We recently identified TL1A, an endothelium-derived T cell costimulator and a ligand for tumor necrosis factor receptor superfamily members DR3 and decoy receptor 3. To elucidate the signaling events triggered by TL1A-DR3 interaction and to understand the molecular mechanisms regulating DR3-mediated apoptosis, we have studied the effect of TL1A and an agonistic DR3 monoclonal antibody in human erythroleukemic TF-1 cells, which express DR3 endogenously. TL1A induced the formation of a DR3 signaling complex containing TRADD, TRAF2, and RIP and activated the NF-kappaB and the ERK, JNK, and p38 mitogen-activated protein kinase pathways. However, TL1A or an agonistic DR3 monoclonal antibody did not induce apoptosis in these cells nor were there detectable levels of FADD or procaspase-8 seen in the signaling complex. Interestingly, DR3-mediated apoptosis was induced in TF-1 cells in the presence of a NF-kappaB pathway-specific inhibitor but not in the presence of mitogen-activated protein kinase inhibitors, either alone or in combination, suggesting that DR3-induced NF-kappaB activation was responsible for resistance to apoptosis in these cells. Consistent with this, we found that TL1A significantly increased the production of c-IAP2, a known NF-kappaB-dependent anti-apoptotic protein, and that the NF-kappaB inhibitor or cycloheximide prevented its synthesis. Furthermore, inhibition of c-IAP2 production by RNA interference significantly sensitized TF-1 cells to TL1A-induced apoptosis. Our study identifies a molecular mechanism by which TL1A and DR3 regulate cell fate in TF-1 cells.  相似文献   

4.
Protein phosphatase 2A (PP2A) is a multifunctional phosphatase that plays important roles in many cellular processes including regulation of cell cycle and apoptosis. Because PP2A is involved in so many diverse processes, it is highly regulated by both non-covalent and covalent mechanisms that are still being defined. In this study we have investigated the importance of leucine carboxyl methyltransferase-1 (LCMT-1) for PP2A methylation and cell function. We show that reduction of LCMT-1 protein levels by small hairpin RNAs causes up to a 70% reduction in PP2A methylation in HeLa cells, indicating that LCMT-1 is the major mammalian PP2A methyltransferase. In addition, LCMT-1 knockdown reduced the formation of PP2A heterotrimers containing the Balpha regulatory subunit and, in a subset of the cells, induced apoptosis, characterized by caspase activation, nuclear condensation/fragmentation, and membrane blebbing. Knockdown of the PP2A Balpha regulatory subunit induced a similar amount of apoptosis, suggesting that LCMT-1 induces apoptosis in part by disrupting the formation of PP2A(BalphaAC) heterotrimers. Treatment with a pan-caspase inhibitor partially rescued cells from apoptosis induced by LCMT-1 or Balpha knockdown. LCMT-1 knockdown cells and Balpha knockdown cells were more sensitive to the spindle-targeting drug nocodazole, suggesting that LCMT-1 and Balpha are important for spindle checkpoint. Treatment of LCMT-1 and Balpha knockdown cells with thymidine dramatically reduced cell death, presumably by blocking progression through mitosis. Consistent with these results, homozygous gene trap knock-out of LCMT-1 in mice resulted in embryonic lethality. Collectively, our results indicate that LCMT-1 is important for normal progression through mitosis and cell survival and is essential for embryonic development in mice.  相似文献   

5.
Malignant melanoma is a lethal disease, and the incidence and mortality associated with it are increasing worldwide. It has a significant tendency to develop both metastasis and resistance to chemotherapy. The tumor cells show abnormal redox regulation, and although the molecular mechanisms involved are not well characterized, they seem to be related to oxidative stress. In a previous study, we showed the antitumoral properties of gallic acid ester derivatives in leukemia cells. Here, we show the effect of octyl, decyl, dodecyl and tetradecyl gallates on B16F10 cells, a melanoma cell line. All compounds induced cytotoxic effects, and the IC50 values obtained were between 7 μM and 17 μM after 48 h of incubation. Cell death occurred through apoptosis, as demonstrated by the genomic DNA fragmentation pattern. The gallates were able to induce significant production of free radicals, deplete both glutathione and ATP, activate NF-κB and promote the inhibition of cell adhesion under the experimental conditions. The glutathione depletion induced by these compounds was related to the inhibition of γ-glutamylcysteine synthase activity. These results suggest that gallates induce tumoral cell death through apoptosis as a consequence of oxidative stress, though they use different mechanisms to do so. These findings are important since melanoma cells are resistant to death because of their high level of antioxidant defense, adhesion capability and propensity to metastasize.  相似文献   

6.
 A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characteristic features of apoptosis in animal cells, such as typical changes in nuclear morphology, the fragmentation of the nucleus and DNA fragmentation. In search of processes involved in plant apoptotic cell death, specific enzyme inhibitors were tested for cell-death-inhibiting activity. Our results showed that proteolysis plays a crucial role in apoptosis in plants. Furthermore, caspase-specific peptide inhibitors were found to be potent inhibitors of the chemical-induced cell death in tomato cells, indicating that, as in animal systems, caspase-like proteases are involved in the apoptotic cell death pathway in plants. Received: 5 August 1999 / Accepted: 14 March 2000  相似文献   

7.
Michael adducts of ascorbic acid with alpha,beta-unsaturated carbonyl compounds have been shown to be potent inhibitors of protein phosphatase 1 (PP1) without affecting cell viability at the respective concentrations. Here we were able to show that higher concentrations can partially inhibit PP2A activity and concomitantly induce apoptotic cell death. A nitrostyrene adduct of ascorbic acid proved to be a more potent and effective inhibitor of PP2A as well as a stronger inducer of apoptosis. These adducts only slightly lost their cytotoxic potential in multidrug resistant cells that were 10-fold less sensitive to apoptosis induction by okadaic acid and vinblastine.  相似文献   

8.
The effect of lipopolysaccharide (LPS) on the cell death induced by endoplasmic reticulum (ER) stress agents in RAW 264.7 cells was studied. LPS prevented the cell death by brefeldin A, but not thapsigargin and tunicamycin. CpG DNA as well as LPS prevented brefeldin A-induced cell death whereas tumor necrosis factor-alpha or interferon-gamma did not. Brefeldin A-induced cell death was mediated with apoptotic cell death and it was significantly inhibited by LPS. LPS abolished the activation of ER stress-related caspases, such as caspases 1, 3, and 4. LPS prevented brefeldin A-induced morphological changes in RAW 264.7 cells. Further, LPS prevented brefeldin A-induced Golgi dispersion. Therefore, LPS was suggested to diminish the stress of ER/Golgi complexes induced by brefeldin A and inhibit apoptosis. The preventive action of LPS on brefeldin A-induced apoptosis is discussed.  相似文献   

9.
Exposure of mouse NB-2a neuroblastoma cells to genotoxic (etoposide or cytosine arabinoside) or nongenotoxic challenges (serum deprivation or okadaic acid) resulted in progressive cell death with biochemical and morphological characteristics typical of apoptosis. Apoptotic cell death induced by nongenotoxic agents was associated with the disintegration of nuclear DNA into high molecular weight (HMW) and oligonucleosomal-DNA fragments, while the formation of HMW-DNA fragments, but not oligonucleosomal-DNA ladder accompanied apoptosis induced by genotoxic agents. Combination of genotoxic and nongenotoxic insults, i.e. incubation of etoposide-treated cells in the serum-free medium, resulted in an additive effect on the profile of DNA disintegration, which involved both HMW fragmentation pattern as in etoposide alone treated cells and the oligonucleosomal-DNA ladder observed with serum-deprived cells. On the other hand, incubation of serum-deprived cells in the presence of Zn2+-ions led to the abrogation of internucleosomal DNA fragmentation but accumulation of HMW-DNA fragments. Differences in the pattern of DNA fragmentation were reproducible in a cell free apoptotic system after treatment of isolated normal nuclei with cytosolic extracts prepared from the cells treated with genotoxic or nogenotoxic apoptotic inducers. Cell free experiments also revealed that activities responsible for the formation of HMW- and oligonucleosomal-DNA fragments are separable in cytosolic extract prepared from the serum-deprived cells. Finally, DNA fragmentation induced by nongenotoxic apoptotic inducers was effectively prevented by cycloheximide and suramin, while both cycloheximide and suramin had only a slight inhibitory effect on DNA fragmentation induced by genotoxic agents. The results presented suggest that distinct pathways underlay disintegration of nuclear DNA during apoptosis induced by genotoxic and nongenotoxic inducers, and that the formation of HMW- and oligonucleosomal-DNA fragments proceeds via separate mechanisms in NB-2a neuroblastoma cells.  相似文献   

10.
Exposure of neurons to H(2)O(2) results in both necrosis and apoptosis. Caspases play a pivotal role in apoptosis, but exactly how they are involved in H(2)O(2)-mediated cell death is unknown. We examined H(2)O(2)-induced toxicity in neuronal PC12 cells and the effects of inducible overexpression of the H(2)O(2)-scavenging enzyme catalase on this process. H(2)O(2) caused cell death in a time- and concentration-dependent manner. Cell death induced by H(2)O(2) was found to be mediated in part through an apoptotic pathway as H(2)O(2)-treated cells exhibited cell shrinkage, nuclear condensation and marked DNA fragmentation. H(2)O(2) also triggered activation of caspase 3. Genetic up-regulation of catalase not only significantly reduced cell death but also suppressed caspase 3 activity and DNA fragmentation. While the caspase 3 inhibitor DEVD inhibited both caspase 3 activity and DNA fragmentation induced by H(2)O(2) it did not prevent cell death. Treatment with the general caspase inhibitor ZVAD, however, resulted in complete attenuation of H(2)O(2)-mediated cellular toxicity. These results suggest that DNA fragmentation induced by H(2)O(2) is attributable to caspase 3 activation and that H(2)O(2) may be critical for signaling leading to apoptosis. However, unlike inducibly increased catalase expression and general caspase inhibition both of which protect cells from cytotoxicity, caspase 3 inhibition alone did not improve cell survival suggesting that prevention of DNA fragmentation is insufficient to prevent H(2)O(2)-mediated cell death.  相似文献   

11.
Docosahexaenoic acid (DHA) is an omega-3 fatty acid under intense investigation for its ability to modulate cancer cell growth and survival. This research was performed to study the cellular and molecular effects of DHA. Our experiments indicated that the treatment of Jurkat cells with DHA inhibited their survival, whereas similar concentrations (60 and 90 microM) of arachidonic acid and oleic acid had little effect. To explore the mechanism of inhibition, we used several measures of apoptosis to determine whether this process was involved in DHA-induced cell death in Jurkat cells. Caspase-3, an important cytosolic downstream regulator of apoptosis, is activated by death signals through proteolytic cleavage. Incubation of Jurkat cells with 60 and 90 microM DHA caused proteolysis of caspase-3 within 48 and 24 h, respectively. DHA treatment also caused the degradation of poly-ADP-ribose polymerase and DNA fragmentation as assayed by flow cytometric TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay. These results indicate that DHA induces apoptosis in Jurkat leukemic cells. DHA-induced apoptosis was effectively inhibited by tautomycin and cypermethrin at concentrations that affect protein phosphatase 1 (PP1) and protein phosphatase 2B (PP2B) activities, respectively, implying a role for these phosphatases in the apoptotic pathway. Okadaic acid, an inhibitor of protein phosphatase 2A, had no effect on DHA-induced apoptosis. These results suggest that one mechanism through which DHA may control cancer cell growth is through apoptosis involving PP1/PP2B protein phosphatase activities.  相似文献   

12.
Intracellular acidification is known to be involved in the initiation phase of apoptosis. However, the necessity of intracellular acidic conditions in the execution phase of apoptosis remains unknown. In this study, we found that in HL-60 cells imidazole induces cell death, associated with intracellular acidification, caspase-3 activation and DFF-45 cleavage, but not oligonucleosomal DNA fragmentation. A caspase inhibitor prevented cell death but not intracellular acidification. When pHi was neutralized by changing from imidazole-containing medium to fresh medium, oligonucleosomal DNA fragmentation and increased caspase-3 activity was observed in the imidazole-treated HL-60 cells. Furthermore, the DNA fragmentation induced by intracellular neutralization was inhibited by caspase inhibitor treatment. These results indicate that imidazole induces caspase-dependent cell death, and suggest that maintaining pHi in the neutral range is essential for the induction of oligonucleosomal DNA fragmentation in the execution phase of apoptosis.  相似文献   

13.
Protein phosphatase (PP) activity is associated with the regulation of apoptosis in neutrophils. However, the underlying regulatory mechanism(s) in apoptosis remain unclear. The type of cell death induced by okadaic acid (OA), the inhibitor of PP1 and PP2A, is characterized by apoptotic morphological changes of the cells and annexin V-positive staining without DNA fragmentation. The apoptotic effects of OA and calyculin A on neutrophils were observed at concentrations ranging from 50 to 200 nM, or 10 to 50 nM, respectively. Cyclosporine A (a PP2B specific inhibitor), however, did not exhibit any pro-apoptotic effects. OA and calyculin A, but not cyclosporine A, exhibited significant effects on protein levels and on the electrophoretic mobility of Mcl-1. zVAD-fmk, a pancaspase inhibitor, failed to inhibit the effect of OA on the caspase-3 activity, procaspase-3 processing, and the apoptotic rate of neutrophils. However, 4-(2-aminoethyl) benzenesulfonylfluoride (AEBSF), a general serine protease inhibitor, significantly abrogated the OA-induced mobility shift in procaspase-3, caspase-3 activation, and the apoptotic morphological changes in neutrophils. Moreover, OA enhanced the serine protease activity of the neutrophils. The addition of the proteinase-3 protein increased the rate of neutrophil apoptosis, which was also blocked by AEBSF but not by zVAD-fmk. These results suggest that OA induces procaspase-3 processing but that OA-induced apoptosis is caspase-independent and serine protease-dependent.  相似文献   

14.
Chohan MO  Khatoon S  Iqbal IG  Iqbal K 《FEBS letters》2006,580(16):3973-3979
The activity of protein phosphatase (PP)-2A, which regulates tau phosphorylation, is compromised in Alzheimer disease brain. Here we show that the transient transfection of PC12 cells with inhibitor-2 (I2PP2A) of PP2A causes abnormal hyperphosphorylation of tau at Ser396/Ser404 and Ser262/Ser356. This hyperphosphorylation of tau is observed only when a sub-cellular shift of I2PP2A takes place from the nucleus to the cytoplasm and is accompanied by cleavage of I2PP2A into a 20 kDa fragment. Memantine, an un-competitive inhibitor of N-methyl-D-aspartate receptors, inhibits this abnormal phosphorylation of tau and cell death and prevents the I2PP2A-induced inhibition of PP2A activity in vitro. These findings demonstrate novel mechanisms by which I2PP2A regulates the intracellular activity of PP2A and phosphorylation of tau, and by which Memantine modulates PP2A signaling and inhibits neurofibrillary degeneration.  相似文献   

15.
The cytotoxicity of two inhibitors of protein phosphatases PP1 and PP2A has been investigated on primary cultures of dog thyrocytes. Both compounds, okadaic acid and calyculin A elicited dose- and time- related effects, i.e. apoptosis and necrosis. In addition a pronounced detachment of the cells from the monolayer was also observed. Based on the different patterns of morphological alterations and on the biochemical data, it was concluded that each compound induced different types of cell death; this provides additional evidence that a specific cell type can initiate distinct programs of death depending on the triggering stimulus. To explain the effects recorded when both compounds were added concomitantly, a functional interaction between PP1 and PP2A has been proposed. Finally, all the effects appeared modulated, to different extent, by cycloheximide and by actinomycin D. This supports the view that de novo RNA synthesis is required for the induction of death by these phosphatase inhibitors in these cells.  相似文献   

16.
Apoptosis and necrosis are two forms of cell death that can occur in response to various agents and oxidative damage. In addition to necrosis, apoptosis contributes to muscle fiber loss in various muscular dystrophies as well participates in the exudative diathesis in chicken, pathology caused by dietary deficiency of vitamin E and selenium, which affects muscle tissue. We have used chicken skeletal muscle cells and bovine fibroblasts to study molecular events involved in the cell death induced by oxidative stress and apoptotic agents. The effect of vitamin E on cell death induced by oxidants was also investigated. Treatment of cells with anti-Fas antibody (50 to 400 ng/mL), staurosporine (0.1 to 100 microM) and TNF-alpha (10 and 50 ng/mL) resulted in a little loss of Trypan blue exclusion ability. Those stimuli conducted cells to apoptosis detected by an enhancement in caspase activity upon fluorogenic substrates but this activity was not fully blocked by the caspase inhibitor Z-VAD-fmk. Oxidative stress induced by menadione (10, 100 and 250 muM) promoted a significant reduction in cell viability (10%, 20% and 35% for fibroblasts; 20%, 30% and 75% for muscle cells, respectively) and caused an increase in caspase activity and DNA fragmentation. H2O2 also promoted apoptosis verified by caspase activation and DNA fragmentation, but in higher doses induced necrosis. Vitamin E protected cells from death induced by low doses of oxidants. Although it was ineffective in reducing caspase activity in fibroblasts, this vitamin diminished the enzyme activity in muscle cells. These data suggested that oxidative stress could activate apoptotic mechanisms; however the mode of cell death will depend on the intensity and duration of the stimulus, and on the antioxidant status of the cells.  相似文献   

17.
Concanavalin A (ConA), normally a mitogen of T lymphocytes, was found to induce apoptosis or programmed cell death in murine peritoneal macrophages. The following observations support this assertion: 1) incubation of peritoneal macrophages or cultured PU5-1.8 macrophage cells with ConA caused a dose- and time-dependent reduction of mitochondrial dehy-drogenase activity as measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 2) treatment of cells with ConA induced formation of apoptotic bodies as seen under the confocal laser scanning microscope, 3) challenge of cells with ConA produced a considerable amount of cell debris with DNA content next to G0 phase as revealed by flow cytometry and 4) ConA was able to elicit DNA fragmentation in these cells. The involvement of Ca(2+) in mediating the apoptosis was studied in single cells by confocal laser scanning microscope using the Ca(2+) fluorescence dye, fluo-3. Our results show that ConA induced an immediate rise of intracellular free Ca(2+) concentration as well as opening of Ca(2+) channels on cell surface. But when the cells were treated with 1,2-bis(o-aminophenoxy) ethane-N, N, N', N'-tetraacetic acid/AM (BAPTA/AM), a Ca(2+) chelator, to buffer the rise of internal Ca(2+), ConA still caused DNA fragmentation. Furthermore, injection of Ca(2+) into the cell with ionomycin had no stimulatory effect on DNA fragmentation. These results suggest that Ca(2+) changes induced by ConA are not a prerequisite for apoptosis in macrophages.  相似文献   

18.
Chronic lymphocytic leukemia lymphocytes were used to study mechanisms involved in apoptosis (programmed cell death). Apoptosis, which was determined by morphological changes including cell death and by internucleosomal DNA fragmentation, occurred during culture for 1 to 2 days in a portion of the cells from three of the four patients tested. Most of the cells underwent apoptosis and DNA fragmentation was greatly enhanced when cells were cultured in the presence of the microtubule inhibitor colchicine, the topoisomerase II inhibitor etoposide, or the glucocorticoid methylprednisolone. Tumor-promoting phorbol esters inhibited spontaneous DNA fragmentation and cell death including that induced by colchicine, etoposide, and methylprednisolone, indicating that they act on an event common to apoptosis caused by diverse stimuli. Phorbol esters probably act through protein phosphorylation, since they were effective at concentrations which modulated protein kinase C (PKC) and their action was prevented by H-7, which binds to and inactivates the catalytic site of PKC. In the absence of phorbol ester, H-7 itself induced some apoptosis. These findings implicate PKC in the suppression of apoptosis, but its precise role requires systematic investigation.  相似文献   

19.
Bcl-2 protects cells from cytokine-induced nitric-oxide-dependent apoptosis   总被引:2,自引:0,他引:2  
 Cytokine-mediated cell death in tumor cells can be achieved through endogenous nitric oxide (NO) from within tumor cells or exogenous NO from either activated macrophages or endothelial cells. The purpose of this study was to determine the role of Bcl-2 in NO-mediated apoptosis. The incubation of murine L929 and NIH3T3 cells with interleukin-1α (IL-1α) and interferon γ (IFNγ) induced high endogenous NO production only in the L929 cells that also underwent apoptosis. NIH3T3 cells were not resistant to NO-mediated apoptosis. In fact, the incubation of L929 and NIH3T3 cells with exogenous NO derived from NO donors, sodium nitroprusside, or S-nitroso-N-acetyl-DL-penicillamine (SNAP) induced death, characterized by typical apoptotic morphology and DNA fragmentation, in both cell types, but to a higher degree in NIH3T3 cells than in the L929 cells. We then measured the effect of Bcl-2 expression on exogenous NO-induced apoptosis. At both the mRNA and protein levels, L929 fibroblasts expressed higher levels of endogenous mouse Bcl-2 than did NIH3T3 cells. At the same time, L929 cells were much more resistant to exogenous NO-induced cell death than were NIH3T3 cells. The inverse correlation between mouse Bcl-2 expression and sensitivity to exogenous NO-mediated cell death was also found in the murine K-1735 melanoma C-23 and X-21 clonal populations. Transfection of both NIH3T3 cells and L929 cells with the human bcl-2 gene led to resistance to both exogenous and endogenous NO-mediated apoptosis. These data demonstrate that NO-mediated apoptosis can be suppressed by expression of Bcl-2, suggesting that abnormal expression of Bcl-2 may influence the efficacy of tumor immunotherapy. Received: 28 June 1998 / Accepted: 23 August 1996  相似文献   

20.
Hinokitiol, a potent iron chelator, has been reported to induce differentiation in teratocarcinoma F9 cells with a reduction of viable cells. In this study, we examined the steps leading to eventual cell death by hinokitiol during differentiation. Hinokitiol induced DNA fragmentation of F9 cells in a concentration- and time-dependent manner. This effect was also observed in a cell-free system using the nuclei from intact cells and the cytosols from hinokitiol-treated cells. In contrast, hinokitiol methyl ether and hinokitiol-Fe (III) complex, which are deficient in iron-chelating activity, showed no DNA fragmentation activity in both cell culture and cell-free systems. These results suggest that iron deprivation by hinokitiol may be involved in the induction of apoptosis of F9 cells. Caspase-3, one of the key enzymes in the apoptotic cascade, was specifically activated by hinokitiol treatment, but not by the other two derivatives. In addition, its specific inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, strongly blocked hinokitiol-induced DNA fragmentation. These results indicate that iron deprivation by hinokitiol can induce apoptosis of F9 cells through the activation of caspase-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号