首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in tumor cells but not in healthy cells. Similar to CD95 ligand (CD95L), TRAIL signaling requires ligand-receptor interaction; the downstream signaling molecules, such as Fas-associated death domain and caspase-8, also seem similar. Using cells stably expressing TRAIL and CD95L, we show that both TRAIL and CD95L induce apoptosis in the rat colon carcinoma cell line CC531. The mitochondrial damage (loss of mitochondrial membrane potential (MMP) and release of cytochrome c) observed after co-incubation with TRAIL-expressing cells occurs much earlier than that observed with CD95L-expressing cells. The decrease in MMP induced by both ligands was caspase-8-mediated; no difference in caspase-8 activation by TRAIL and CD95L was found. TRAIL, but not CD95L, induced activation of caspase-10. bcl-2 overexpression could not prevent TRAIL-induced mitochondrial dysfunction, whereas it completely prevented CD95L-mediated loss of MMP and cytochrome c release. The selective effect of TRAIL on tumor cells and the apparent inability of bcl-2 to block TRAIL-induced apoptosis suggest that TRAIL may offer a lead for cancer therapy in the future.  相似文献   

3.
Here we show that LNCaP, which is resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, becomes sensitive to TRAIL after overexpression of full-length, wild-type BAD (BAD WT). TRAIL induces caspase-dependent cleavage of BAD WT that results in generation of a M(r) 15,000 protein. LNCaP stably expressing truncated BAD (tBAD) and cells expressing mutated BAD at the caspase cleavage site were less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Cytochrome c and Smac/DIABLO release from mitochondria into cytosol was found after TRAIL treatment only in cells overexpressing BAD WT. Furthermore, differences in phosphorylation of serine residues for BAD WT and tBAD were identified. BAD WT was phosphorylated at positions S136 and S155, whereas tBAD was phosphorylated at positions S112, S136, and S155. LNCaP stably expressing BAD mutated at serine 112 to alanine was less sensitive to TRAIL treatment when compared to LNCaP expressing BAD WT. Lastly, recombinant BAD cleaved by caspase-3 is a more potent inducer of cytochrome c and Smac/DIABLO release than BAD WT. In summary, BAD-mediated sensitivity of LNCaP to TRAIL depends on the phosphorylation status of BAD WT and tBAD.  相似文献   

4.
5.
6.
Carotenoids are compounds contained in foods and possess anticarcinogenic activity. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapeutics due to its ability to induce apoptosis selectively in cancer cells. However, some tumors remain tolerant to TRAIL-induced apoptosis. Therefore, it is important to develop agents that overcome this resistance. We show, for the first time, that certain carotenoids sensitize cancer cells to TRAIL-induced apoptosis. Combined treatment with halocynthiaxanthin, a dietary carotenoid contained in oysters and sea squirts, and TRAIL drastically induced apoptosis in colon cancer DLD-1 cells, whereas each agent alone only slightly induced apoptosis. The combination induced nuclear condensation and poly(ADP-ribose) polymerase cleavage, which are major features of apoptosis. Various caspase inhibitors could attenuate the apoptosis induced by this combination. Furthermore, the dominant-negative form of a TRAIL receptor could block the apoptosis, suggesting that halocynthiaxanthin specifically facilitated the TRAIL signaling pathway. To examine the molecular mechanism of the synergistic effect of the combined treatment, we did an RNase protection assay. Halocynthiaxanthin markedly up-regulated a TRAIL receptor, death receptor 5 (DR5), among the death receptor-related genes, suggesting a possible mechanism for the combined effects. Moreover, we examined whether other carotenoids also possess the same effects. Peridinin, but not alloxanthin, diadinochrome, and pyrrhoxanthin, induced DR5 expression and sensitized DLD-1 cells to TRAIL-induced apoptosis. These results indicate that the combination of certain carotenoids and TRAIL is a new strategy to overcome TRAIL resistance in cancer cells.  相似文献   

7.
8.
9.
BackgroundTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was originally isolated as an inducer of apoptosis in transformed cells. In addition to tumor surveillance, recent findings suggest that TRAIL and its receptor system have a protective role against infection and cardiovascular disease (CVD). Patients undergoing hemodialysis have a high mortality rate with a unique risk factor profile. Considering that the leading causes of death in these patients are infection and CVD, TRAIL represents an attractive candidate for predicting mortality in this population. We therefore investigated whether TRAIL predicted mortality in hemodialysis patients.MethodsThe study was a retrospective observational cohort design of 45-month duration in 149 male hemodialysis patients. The subjects were divided into two groups according to their baseline TRAIL level measured by ELISA (low or high TRAIL group). The main outcome was all-cause mortality.ResultsDuring the follow-up period, 33 patients died, mostly because of CVD (n = 11) or infection (n = 9). Crude survival analyses showed that a low TRAIL level was a powerful predictor of all-cause (p = 0.011) and infectious mortality (p = 0.048). The predictive power of TRAIL remained after adjustment for various confounding factors.ConclusionsThe serum TRAIL level may be a novel biomarker for predicting prognosis in hemodialysis patients.  相似文献   

10.
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted much attention because of its ability to kill tumour cells. In this study, we demonstrated that treatment of QGY-7703 cells with the combination of TRAIL and etoposide resulted in synergistic cytotoxic effects. In dissecting the mechanism underlying this synergistic effect, we found that treatment with etoposide alone resulted in the upregulation of Bax, while the level of truncated Bid (tBid) was unchanged. In contrast, while treatment with TRAIL alone significantly increased the level of tBid, the expression of Bax remained unaffected. The enhanced apoptosis was accompanied by an increased release of cytochrome c and second mitochondria-derived activator of caspase/direct IAP binding protein with low pI (DIABLO) from mitochondria, leading to the activation of cellular caspase-8, -9, -3 and -7, as well as poly ADP-ribose polymerase. This enhanced release of cytochrome c and second mitochondria-derived activator of caspase/DIABLO was inhibited by the general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. The RT-PCR and Western blotting results demonstrated that the levels of both mRNA and protein for death receptor-4, death receptor-5 and decoy receptor-2 remained unchanged in response to etoposide, indicating that the synergistic effect of TRAIL and etoposide is not a result of increasing the expression for TRAIL receptors, but rather is associated with amplification of the mitochondrial signal pathway.  相似文献   

11.
12.
13.
Recent evidence suggests that TNF-related apoptosis-inducing ligand (TRAIL), a death-inducing cytokine with anti-tumor potential, initiates apoptosis by re-organizing TRAIL receptors into large clusters, although the structure of these clusters and the mechanism by which they assemble are unknown. Here, we demonstrate that TRAIL receptor 2 (DR5) forms receptor dimers in a ligand-dependent manner at endogenous receptor levels, and these receptor dimers exist within high molecular weight networks. Using mutational analysis, FRET, fluorescence microscopy, synthetic biochemistry, and molecular modeling, we find that receptor dimerization relies upon covalent and noncovalent interactions between membrane-proximal residues. Additionally, by using FRET, we show that the oligomeric structure of two functional isoforms of DR5 is indistinguishable. The resulting model of DR5 activation should revise the accepted architecture of the functioning units of DR5 and the structurally homologous TNF receptor superfamily members.  相似文献   

14.
Endothelial cell survival and antiapoptotic pathways, including those stimulated by extracellular matrix, are critical regulators of vasculogenesis, angiogenesis, endothelial repair, and shear-stress-induced endothelial activation. One of these pathways is mediated by alpha(v)beta(3) integrin ligation, downstream activation of nuclear factor-kappaB, and subsequent up-regulation of osteoprotegerin (OPG). In this study, the mechanism by which OPG protects endothelial cells from death was examined. Serum-starved human microvascular endothelial cells (HMECs) plated on the alpha(v)beta(3) ligand osteopontin were protected from cell death. Immunoprecipitation experiments indicated that OPG formed a complex with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in HMECs under these conditions. Furthermore, inhibitors of TRAIL, including recombinant soluble TRAIL receptors and a neutralizing antibody against TRAIL, blocked apoptosis of serum-starved HMECs plated on the nonintegrin attachment factor poly-d-lysine. Whereas TRAIL was unable to induce apoptosis in HMECs plated on osteopontin, the addition of recombinant TRAIL did increase the percentage of apoptotic HMECs plated on poly-d-lysine. This evidence indicates that OPG blocks endothelial cell apoptosis through binding TRAIL and preventing its interaction with death-inducing TRAIL-receptors  相似文献   

15.
The present studies were performed to determine whether lysosomal permeabilization contributes to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity and to reconcile a role for lysosomes with prior observations that Bcl-2 family members regulate TRAIL-induced apoptosis. In KMCH cholangiocarcinoma cells stably expressing Mcl-1 small interference RNA (siRNA), treatment with TRAIL induced a redistribution of the cathepsin B from lysosomes to the cytosol. Pharmacological and small hairpin RNA-targeted inhibition of cathepsin B attenuated TRAIL-mediated apoptosis as assessed by morphological, biochemical, and clonogenic assays. Neither Bid siRNA nor Bak siRNA prevented cathepsin B release. In contrast, treatment of the cells with Bim siRNA or the JNK inhibitor SP600125 attenuated lysosomal permeabilization and cell death. Moreover, Bim and active Bax co-localized to lysosomes in TRAIL-treated cells in a JNK-dependent manner, and Bax siRNA reduced TRAIL-induced lysosomal permeabilization and cell death. Finally, BH3 domain peptides permeabilized isolated lysosomes in the presence of Bax. Collectively, these data suggest that TRAIL can trigger an apoptotic pathway that involves JNK-dependent activation of Bim, which in turn induces Bax-mediated permeabilization of lysosomes.  相似文献   

16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to induce apoptosis in various tumor cells but not in nontransformed, normal cells. Preclinical studies in mice and nonhuman primates have shown that administration of TRAIL can induce apoptosis in human tumors, but that no cytotoxicity to normal organs or tissues is found. The susceptibility of tumor cells to TRAIL and an apparent lack of activity in normal cells has lead to a proposal to use TRAIL in cancer therapy. Here, we assessed the sensitivity of hepatocytes from rat, mouse, rhesus monkey and human livers to TRAIL-induced apoptosis. TRAIL induced apoptosis in normal human hepatocytes in culture but not in hepatocytes isolated from the other species. Human hepatocytes showed characteristic features of apoptosis, including cytoplasmic shrinkage, the activation of caspases and DNA fragmentation. Apoptosis and cell death in human hepatocytes was massive and rapid, occurring in more than 60% of the cells exposed to TRAIL within 10 hours. These results indicate that there are species differences in sensitivity to TRAIL, and that substantial liver toxicity might result if TRAIL were used in human cancer therapy.  相似文献   

17.
18.
Hypericin (HYP) is a photosensitizing pigment from Hypericum perforatum that displays cytotoxic effects in neoplastic cell lines. Therefore, HYP is presently under consideration as a new anticancer drug in photodynamic therapy. Here, we investigated the mechanism of action of HYP photo-induced apoptosis of Jurkat cells compared to the cytostatic drug paclitaxel (PXL). Both photoactivated HYP and PXL similarly increased the activity of caspase-8 and caspase-3, and drug-induced apoptosis of Jurkat cells was completely blocked by inhibitors of caspase-8 (Z-IETD-FMK) and caspase-3 (Z-DEVD-FMK). The involvement of death receptors was analyzed using neutralizing monoclonal antibodies against Fas (SM1/23), FasL (NOK-2) and TNF-R1 (MAB225), and a polyclonal rabbit anti-human TNF-related apoptosis-inducing ligand (TRAIL) antiserum. TRAIL antibody blocked TRAIL-induced and HYP photo-induced, but not PXL-induced apoptosis of Jurkat cells. In contrast, PXL-induced, but not HYP-induced apoptosis was blocked by the SM1/23 and NOK-2 antibodies. Anti-TNF-R1 antibody had no effect. These findings suggest that HYP photo-induced apoptosis of Jurkat cells is mediated in part by the TRAIL/TRAIL-receptor system and subsequent activation of upstream caspases.  相似文献   

19.
In this study we have investigated the effect and the mechanisms by which tumor necrosis factor-like weak inducer of apoptosis (TWEAK) modulates myogenic differentiation. Treatment of C2C12 myoblasts with TWEAK inhibited their differentiation evident by a decrease in the expression of creatine kinase, myosin heavy chain-fast twitch, myogenin, and the formation of multinucleated myotubes. TWEAK also inhibited the differentiation of mouse primary myoblasts. Conversely, the proliferation of C2C12 myoblasts and the expression of a cell-cycle regulator cyclin D1 were increased in response to TWEAK treatment. Inhibition of cellular proliferation using hydroxyurea only partially reversed the inhibitory effect of TWEAK on myogenic differentiation. Treatment of C2C12 myoblasts with TWEAK resulted in the activation of nuclear factor-kappaB (NF-kappaB), the (IkappaB) IkappaB kinase (IKK) complex, and the phosphorylation and degradation of IkappaBalpha protein. Inhibition of NF-kappaB activity by overexpression of a dominant negative mutant of IkappaBalpha (IkappaBalphaDeltaN) significantly increased the myogenic differentiation in TWEAK-treated C2C12 cultures. Furthermore, overexpression of a dominant negative mutant of IKKbeta (IKKbetaK44A) but not IKKalpha (IKKalphaK44M) reversed the inhibitory effect of TWEAK on myogenesis. TWEAK inhibited the expression of myogenic regulatory factors MyoD and myogenin and also induced the degradation of MyoD protein. Finally, inhibition of NF-kappaB activation through overexpression of IKKbetaK44A prevented the degradation of MyoD protein. Overall, our data suggest that TWEAK inhibits myogenesis through the activation of NF-kappaB signaling pathway and degradation of MyoD protein.  相似文献   

20.
ABSTRACT: BACKGROUND: While breast cancer (BC) is the major cause of death among women worldwide, there is no guarantee of better patient survival because many of these patients develop primarily metastases, despite efforts to detect it in its early stages. Bone metastasis is a common complication that occurs in 65-80 % of patients with disseminated disease, but the molecular basis underlying dormancy, dissemination and establishment of metastasis is not understood. Our objective has been to evaluate simultaneously osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), stromal cell-derived factor-1 (SDF-1), and their receptors (R) in 2 human BC cell lines, MDA-MB-231 and MCF-7. METHODS: OPG, RANKL, TRAIL and SDF-1 expression and release, in addition to the expression of their receptors has been investigated using immunofluorescence, imunocytochemistry and ELISA analyses. RESULTS: MCF-7 cells released higher levels of OPG in conditioned media (CM) than MDA-MB-231 cells; 100 % of both types of cell expressed OPG, RANKL, TRAIL and SDF-1. Moreover, 100 % in both lines expressed membrane RANKL and RANK, whereas only 50 % expressed CXCR4. Furthermore, 100 % expressed TRAIL-R1 and R4, 30-50 % TRAIL-R2, and 40-55 % TRAIL-R3. CONCLUSIONS: MCF-7 and MDA-MB-231 cells not only released OPG, but expressed RANKL, TRAIL and SDF-1. The majority of the cells also expressed RANK, CXCR4 and TRAIL-R. Since these ligands and their receptors are implicated in the regulation of proliferation, survival, migration and future bone metastasis during breast tumor progression, assessment of these molecules in tumor biopsies of BC patients could be useful in identifying patients with more aggressive tumors that are also at risk of bone metastasis, which may thus improve the available options for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号