首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA interference (RNAi) was investigated with the aim of achieving gene silencing with diverse RNAi platforms that include small interfering RNA (siRNA), short hairpin RNA (shRNA) and antisense oligonucleotides (ASO). Different versions of each system were used to silence the expression of specific subunits of the heterotrimeric signal transducing G-proteins, G alpha i2 and G beta 2, in the RAW 264.7 murine macrophage cell line. The specificity of the different RNA interference (RNAi) platforms was assessed by DNA microarray analysis. Reliable RNAi methodologies against the genes of interest were then developed and applied to functional studies of signaling networks. This study demonstrates a successful knockdown of target genes and shows the potential of RNAi for use in functional studies of signaling molecules.  相似文献   

2.
RNA interference (RNAi) has emerged as a powerful tool to silence specific genes. Vector‐based RNAi systems have been developed to downregulate targeted genes in a spatially and temporally regulated fashion both in vitro and in vivo. The zebrafish (Danio rerio) is a model animal that has been examined based on a wide variety of biological techniques, including embryonic manipulations, forward and reverse genetics, and molecular biology. However, a heritable and tissue‐specific knockdown of gene expression has not yet been developed in zebrafish. We examined two types of vector, which produce small interfering RNA (siRNA), the direct effector in RNAi system; microRNA (miRNA) process mimicking vectors with a promoter for RNA polymerase II and short hairpin RNA (shRNA) expressing vector through a promoter for RNA polymerase III. Though gene‐silencing phenotypes were not observed in the miRNA process mimicking vectors, the transgenic embryos of the second vector (Tg(zU6‐shGFP)), shRNA expressing vector for enhanced green fluorescence protein, revealed knockdown of the targeted gene. Interestingly, only the embryos from Tg(zU6‐shGFP) female but not from the male fish showed the downregulation. Comparison of the quantity of siRNA produced by each vector indicates that the vectors tested here induced siRNA, but at low levels barely sufficient to silence the targeted gene.  相似文献   

3.
RNA interference (RNAi) mediated by DNA-based expression of short hairpin RNA (shRNA) is a powerful method of sequence-specific gene knockdown. A number of vectors for expression of shRNA have been developed that feature promoters from RNA polymerase III (pol III)-transcribed genes of mouse or human origin. To advance the use of RNAi as a tool for functional genomic research and for future development of specific therapeutics in the bovine species, we have developed shRNA expression vectors that feature novel bovine RNA pol III promoters. We characterized two bovine U6 small nuclear RNA (snRNA) promoters (bU6-2 and bU6-3) and a bovine 7SK snRNA promoter (b7SK). We compared the efficiency of each of these promoters to express shRNA molecules. Promoter activity was measured in the context of RNAi by targeting and suppressing the reporter gene encoding enhanced green fluorescent protein. Results show that the b7SK promoter induced the greatest level of suppression in a range of cell lines. The comparison of these bovine promoters in shRNA expression is an important component for the future development of bovine-specific RNAi-based research.  相似文献   

4.
RNAi (RNA interference) has become a popular means of knocking down a specific gene in vivo. The most common approach involves the use of chemically synthesized short interfering RNAs (siRNAs), which are relatively easy and fast to use, but which are costly and have only transient effects. These limitations can be overcome by using short hairpin RNA (shRNA) expression vectors. However, current methods of generating shRNA expression vectors require either the synthesis of long (50-70 nt) costly oligonucleotides or multi-step processes. To overcome this drawback, we have developed a one-step short-oligonucleotides- based method with preparation costs of only 15% of those of the conventional methods used to obtain essentially the same DNA fragment encoding shRNA. Sequences containing 19 bases homologous to target genes were synthesized as 17- and 31-nt DNA oligonucleotides and used to construct shRNA expression vectors. Using these plasmids, we were able to effectively silence target genes. Because our method relies on the one-step ligation of short oligonucleotides, it is simple, less error-prone, and economical.  相似文献   

5.
6.
7.
8.
9.
RNA interference (RNAi) mediates gene silencing in many eukaryotes and has been widely used to investigate gene functions. A common method to induce sustained RNAi is introducing plasmids that synthesize short hairpin RNAs (shRNAs) using Pol III promoters. While these promoters synthesize shRNAs and elicit RNAi efficiently, they lack cell specificity. Monitoring shRNA expression levels in individual cells by Pol III promoters is also difficult. An alternative way to deliver RNAi is to use Pol II-directed synthesis of shRNA. Previous efforts in developing a Pol II system have been sparse and the results were conflicting, and the usefulness of those Pol II vectors has been limited due to low efficacy. Here we demonstrate a new Pol II system that directs efficient shRNA synthesis and mediates strong RNAi at levels that are comparable with the commonly used Pol III systems. In addition, this system synthesizes a marker protein under control of the same promoter as the shRNA, thus providing an unequivocal indicator, not only to the cells that express the shRNA, but also to the levels of the shRNA expression. This system may be adapted for in vivo shRNA expression and gene silencing.  相似文献   

10.
11.
12.
RNA interference (RNAi) inhibits gene expression by specifically degrading target mRNAs. Since the discovery of double-stranded small interference RNA (siRNA) in gene silencing, RNAi has become a powerful research tool in gene function studies. Compared to genetic deletion, RNAi-mediated gene silencing possesses many advantages, such as the ease with which it is carried out and its suitability to most cell lines. Multiple studies have demonstrated the applications of RNAi technology in cancer research. In particular, the development of the DNA vector-based technology to produce small hairpin RNA (shRNA) driven by the U6 or H1 promoter has made long term and inducible gene silencing possible. Its use in combination with genetically engineered viral vectors, such as lentivirus, facilitates high efficiencies of shRNA delivery and/or integration into genomic DNA for stable shRNA expression. We describe a detailed procedure using the DNA vector-based RNAi technology to determine gene function, including construction of lentiviral vectors expressing shRNA, lentivirus production and cell infection, and functional studies using a mouse xenograft model. Various strategies have been reported in generating shRNA constructs. The protocol described here employing PCR amplification and a 3-fragment ligation can be used to directly and efficiently generate shRNA-containing lentiviral constructs without leaving any extra nucleotide adjacent to a shRNA coding sequence. Since the shRNA-expression cassettes created by this strategy can be cut out by restriction enzymes, they can be easily moved to other vectors with different fluorescent or antibiotic markers. Most commercial transfection reagents can be used in lentivirus production. However, in this report, we provide an economic method using calcium phosphate precipitation that can achieve over 90% transfection efficiency in 293T cells. Compared to constitutive shRNA expression vectors, an inducible shRNA system is particularly suitable to knocking down a gene essential to cell proliferation. We demonstrate the gene silencing of Yin Yang 1 (YY1), a potential oncogene in breast cancer, by a Tet-On inducible shRNA system and its effects on tumor formation. Research using lentivirus requires review and approval of a biosafety protocol by the Biosafety Committee of a researcher's institution. Research using animal models requires review and approval of an animal protocol by the Animal Care and Use Committee (ACUC) of a researcher's institution.  相似文献   

13.
14.
15.
Bao Y  Guo Y  Zhang L  Zhao Z  Li N 《Molecular biology reports》2012,39(3):2515-2522
With the ultimate aim of producing an RNA interference-mediated transgenic pig that is resistant to porcine reproductive and respiratory syndrome virus (PRRSV), we have investigated the effect of RNA interference (RNAi) on silencing the expression of viral genes in the MARC-145 cell line. Twenty small interfering RNAs (siRNAs) were designed and screened for their ability to suppress the expression of the genes ORF1b, 5, 6, and 7 from the highly virulent isolate, PRRSV-JXwn06. Of these siRNAs, the four most effective were selected and four short hairpin RNA (shRNA) expression vectors (pGenesil-1-1b-135, pGenesil-1-1b-372, pGenesil-1-6-135, and pGenesil-1-6-169) targeting ORF1b and ORF6 were constructed and delivered into MARC-145 cells. These cells were then infected with JXwn06. All four vectors inhibited the PRRSV-specific cytopathic effect (CPE). The virus titers in cells transfected with pGenesil-1-1b-135, pGenesil-1-1b-372, pGenesil-1-6-135, and pGenesil-1-6-169 were lower than that of control cells by approximately 150-, 600-, 2.3- and 1.7-fold, respectively. In addition, the expression levels of ORF1 and ORF6 were reduced compared with controls. The unglycosylated membrane protein M, encoded by ORF6, was not detectable in cells transfected with shRNA expression vectors. These results verified that RNAi can effectively inhibit PRRSV-JXwn06 replication in cultured cells in vitro. The four shRNA expression vectors are an initial step in the production of transgenic pigs with PRRSV resistance.  相似文献   

16.
The human embryonic kidney (HEK293) cell line, commonly used for recombinant adenovirus (Ad) propagation, does not express the Ad coreceptor alpha(v)beta3 or alpha(v)beta5 integrins, yet these cells are efficiently infected by Ad vectors. Here we demonstrate that Ad binds to HEK293 cells via the fiber receptor CAR and is subsequently internalized via interaction with integrin alpha(v)beta1. Function-blocking antibodies directed against alpha(v) or beta1, but not beta3, beta5, or alpha5, integrin subunits block Ad infection and viral endocytosis. Therefore, alpha(v)beta1 serves as a coreceptor for Ad infection, and the lack of beta3 and/or beta5 but the relatively high expression of alpha(v)beta1 integrins on certain tumor cell types may explain why these cells are readily transduced by Ad vectors.  相似文献   

17.
18.
19.
RNA interference (RNAi) has become an essential technology for functional gene analysis. Its success, however, depends on the effective expression of RNAi-inducing small double-stranded interfering RNA molecules (siRNAs) in target cells. In many cell types, RNAi can be achieved by transfection of chemically synthesised siRNAs, which results in transient knockdown of protein expression. Expression of double-stranded short hairpin RNA (shRNA) provides another means to induce RNAi in cells that are hard to transfect. To facilitate the generation of stable, conditional RNAi cell lines, we have developed novel one- and two-component vector GATEWAY-compatible lentiviral tetracycline-regulated RNAi (GLTR) systems. The combination of a modified RNA-polymerase-III-dependent H1 RNA promoter (designated ‘THT’) for conditional shRNA expression with different lentiviral delivery vectors allows (1) the use of fluorescent proteins for colour-coded combinatorial RNAi or for monitoring RNAi induction (pGLTR-FP), (2) selection of transduced cells (pGLTR-S), and (3) the generation of conditional cell lines using a one vector system (pGLTR-X). All three systems were found to be suitable for the analysis of essential genes, such as CDC27, a component of the mitotic ubiquitin ligase APC/C, in cell lines and primary human cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号