首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic acidosis is associated with alteration in fluid and electrolyte reabsorption in a number of nephron segments. However, the effects of metabolic acidosis on urine osmolality and aquaporin-2 (AQP-2) remain poorly understood. In these studies, we examined the effects of chronic metabolic acidosis on water handling by the kidney. Rats were placed in metabolic cages and subjected to water (control) or 280 mM NH4Cl loading for 120 h to induce metabolic acidosis. The results indicated a significant increase in urine osmolality with no change in urine volume or urinary Na+ excretion in acid-loaded animals. This effect was independent of alteration in fluid intake or salt/Cl- loading. Immunoblotting and Northern hybridization studies indicated that AQP-2 protein abundance and mRNA expression levels increased significantly along the collecting duct system of NH4Cl-but not NaCl-loaded animals. RIA results indicated that metabolic acidosis was associated with a fourfold increase in circulating levels of vasopressin (AVP) and a significant increase in brain AVP mRNA expression levels. In conclusion, metabolic acidosis upregulates the expression levels of AQP-2 and increases urine osmolality, suggesting an adaptive increase in water reabsorption in the collecting duct. A concomitant increase in AVP synthesis and secretion likely plays an essential role in the adaptation of AQP-2 in metabolic acidosis. kidney; acid-base; urine osmolality; sodium excretion rate  相似文献   

2.
The syndrome of inappropriate antidiuretic hormone (SIADH) is characterized by euvolemic hyponatremia. Patients with SIADH continue to drink normal amounts of fluid, despite plasma osmolalities well below the physiological osmotic threshold for onset of thirst. The regulation of thirst has not been previously studied in SIADH. We studied the characteristics of osmotically stimulated thirst and arginine vasopressin (AVP) secretion in eight subjects with SIADH and eight healthy controls and the nonosmotic suppression of thirst and AVP during drinking in the same subjects. Subjects underwent a 2-h infusion of hypertonic (855 mmol/l) NaCl solution, followed by 30 min of free access to water. Thirst rose significantly in both SIADH (1.5 +/- 0.6 to 8.0 +/- 1.2 cm, P < 0.0001) and controls (1.8 +/- 0.8 to 8.4 +/- 1.5 cm, P < 0.0001), but the osmotic threshold for thirst was lower in SIADH (264 +/- 5.5 vs. 285.9 +/- 2.8 mosmol/kgH(2)O, P < 0.0001). SIADH subjects drank volumes of water similar to controls after cessation of the infusion (948.8 +/- 207.6 vs. 1,091 +/- 184 ml, P = 0.23). The act of drinking suppressed thirst in both SIADH and controls but did not suppress plasma AVP concentrations in SIADH compared with controls (P = 0.007). We conclude that there is downward resetting of the osmotic threshold for thirst in SIADH but that thirst responds to osmotic stimulation and is suppressed by drinking around the lowered set point. In addition, we demonstrated that drinking does not completely suppress plasma AVP in SIADH.  相似文献   

3.
With a view to evaluate the role of AQP-1 and caveolin proteins in the hemostatic actions of vasopressin, hemostasis was evaluated by bleeding and clotting time respectively.Groups of mice and guinea pigs were treated with arginine vasopressin (AVP) and 1-deamino-8D-AVP (DDAVP) to evaluate their effects on the hemostasis. DDAVP and AVP were able to appreciably reduce the bleeding and clotting time after sodium thiopentone, but not effectively after TEA treatment. Animal groups were pretreated with aquaporin-1 (AQP-1) blockers or water deprived to enhance the expression of AQP-1 water channels. Another group of animals were treated with caveolin protein modulators, cholera toxin (CTX) and the effect of vasopressin analogues evaluated. The results suggest that AQP-1 water channels and caveolin proteins contribute to modulate the hemostatic mechanisms of vasopressin.  相似文献   

4.
To investigate the hypothesis that diabetes induces nephrogenic diabetes insipidus, we studied the urine-concentrating ability in response to vasopressin (AVP) in 12 patients with insulin-dependent diabetes mellitus (IDDM) and 12 nondiabetic controls. Subjects were euglycemic-clamped, and after oral water loading, AVP was infused intravenously for 150 min. AVP induced a greater (P<0.001) rise in urine osmolality in controls (67.6+/-10.7 to 720+/-31.1 mosmol/kg, P<0.001) than in IDDM patients (64.3+/-21.6 to 516.7+/-89.3 mosmol/kg, P<0.001). Urinary aquaporin-2 concentrations after AVP infusion were higher in controls (611.8+/-105.6 fmol/mg creatinine) than in IDDM (462.0+/-94.9 fmol/mg creatinine, P = 0. 003). Maximum urine osmolality in IDDM was inversely related to chronic blood glucose control, as indicated by Hb A(Ic) (r = -0.87, P = 0.002). To test the hypothesis that improved glycemic control could reverse resistance to AVP, 10 IDDM subjects with poor glycemic control (Hb A(Ic) >9%) were studied before (B) and after (A) intensified glycemic control. Maximum urine osmolality in response to AVP increased with improved glycemic control (B, 443.8+/-49.0; A, 640.0+/-137.2 mosmol/kg, P<0.001), and urinary aquaporin-2 concentrations after AVP increased from 112.7 +/-69 to 375+/-280 fmol/mg creatinine (P = 0.006), with improved glycemic control. Poorly controlled IDDM is associated with reversible renal resistance to AVP.  相似文献   

5.
To clarify the role of the sugar polyols, sorbitol and myo-inositol, in cerebral cell volume regulation, we studied the effect of sorbinil, an inhibitor of aldose and aldehyde reductase, on the size of the cerebral water compartments in rats with hypernatremia, hyponatremia and normonatremia. Experimental animals were pretreated with sorbinil, while comparison rats received the drug vehicle. Rats were made hypernatremic for 96 h by water deprivation and injections of hypertonic saline, while hyponatremia was provoked over 48 h by daily administration of 5% dextrose in water and vasopressin. Sorbinil treatment was continued throughout the hyper- and hyponatremic periods. The severity of hypernatremia and hyponatremia was similar in sorbinil-treated and corresponding vehicle-treated rats. Brain electrolyte content and the size of the cerebral intracellular water compartment were comparable in sorbinil-treated rats vs. controls under hypernatremic and hyponatremic conditions. Sorbinil reduced the cerebral sorbitol content by approximately 50%, irrespective of the serum Na+ concentration. In contrast, sorbinil had no effect on brain myo-inositol content which rose by 114% during chronic hypernatremia (P less than 0.0001). Cerebral levels of myo-inositol did not decline in hyponatremic rats. We conclude that (1) sorbitol is not an essential cerebral osmolyte; and (2) myo-inositol is involved in the maintenance of brain cell volume during severe hypernatremia but not under hyponatremic conditions.  相似文献   

6.
Collecting duct (CD) adenylyl cyclase VI (AC6) has been implicated in arginine vasopressin (AVP)-stimulated renal water reabsorption. To evaluate the role of CD-derived AC6 in regulating water homeostasis, mice were generated with CD-specific knockout (KO) of AC6 using the Cre/loxP system. CD AC6 KO and controls were studied under normal water intake, chronically water loaded, or water deprived; all of these conditions were repeated in the presence of continuous administration of 1-desamino-8-d-arginine vasopressin (DDAVP). During normal water intake or after water deprivation, urine osmolality (U(osm)) was reduced in CD AC6 KO animals vs. controls. Similarly, U(osm) was decreased in CD AC6 KO mice vs. controls after water deprivation+DDAVP administration. Pair-fed (with controls) CD AC6 KO mice also had lower urine osmolality vs. controls. There were no detectable differences between KO and control animals in fluid intake or urine volume under any conditions. CD AC6 KO mice did not have altered plasma AVP levels vs. controls. AVP-stimulated cAMP accumulation was reduced in acutely isolated inner medullary CD (IMCD) from CD A6 KO vs. controls. Medullary aquaporin-2 (AQP2) protein expression was lower in CD AC6 KO mice vs. controls. There were no differences in urinary urea excretion or IMCD UT-A1 expression; however, IMCD UT-A3 expression was reduced in CD AC6 KO mice vs. controls. In summary, AC6 in the CD regulates renal water excretion, most likely through control of AVP-stimulated cAMP accumulation and AQP2.  相似文献   

7.
The role of arginine vasopressin (AVP) in blood pressure regulation in humans and animals is still controversial. The present study was designed to investigate the effects of AVP on blood pressure and the excretion of sodium and prostaglandin (PG) E2 in rabbits. AVP dissolved in 0.01 M acetic acid was infused subcutaneously at a rate of 0.86 ng/kg/min with a miniosmotic pump into 12 New Zealand white rabbits (2.7-3.4 kg), while 10 controls were given vehicle alone. AVP infusion resulted in a 3.5-fold rise in the level of plasma AVP (21.8 +/- 4.4 (SEM) pg/ml) as compared with controls, associated with a significant decrease in the urine volume and urinary excretion of sodium. The PGE2 excretion was increased 1.8-fold after AVP infusion. In the chronic AVP-infused group, blood pressure was not significantly increased, but the acute vascular response to AVP was significantly attenuated without any changes in the vasopressor response to angiotensin II. Preadministration of V1-antagonist completely abolished the vasopressor action of AVP, but not that of angiotensin II, in either group. These results suggest that circulating AVP within physiological range of concentrations may stimulate renal PGE2 synthesis and attenuate the vascular response through vascular V1 receptors without affecting the baroreflex, which may be attenuated through V2 receptors.  相似文献   

8.
We previously demonstrated that kidney and urine levels of angiotensin-(1-7) [ANG-(1-7)] were increased in pregnancy. To explore the role of ANG-(1-7) on fluid and electrolyte homeostasis during pregnancy, we evaluated the effect of the ANG-(1-7) antagonist D-alanine-[ANG-(1-7)] (A-779) on kidney function. Virgin and pregnant rats received infusion of vehicle or A-779 (48 microg.kg(-1).h(-1)) for 8 days by osmotic minipumps. Metabolic studies were done on treatment day 7-8. Virgin and pregnant rats at day 15 and 19 were killed, and blood and kidneys were collected. Kidneys were prepared for Western blot analysis for aquaporin-1 (AQP1) and aquaporin-2. In virgin female rats, A-779 increased urine volume and decreased urinary osmolality and AQP1 with no change in water intake. In 19-day pregnant rats, A-779 significantly decreased water intake and urine volume and increased urinary osmolality and kidney AQP1 expression. Only in late gestation did A-779 treatment decrease the difference between intake and output (balance). A-779 treatment increased plasma vasopressin in late gestation but did not change vasopressin in virgins. In virgin and pregnant animals, A-779 administration had no effect on blood pressure, plasma volume, blood volume, or urinary electrolytes. These results suggest that ANG-(1-7) produces antidiuresis associated with upregulation of AQP1 in virgin rats, whereas ANG-(1-7) produces diuresis in late gestation with downregulation of AQP1. ANG-(1-7) contributes to the enhanced water intake during pregnancy, allowing maintenance of the normal volume-expanded state despite diuresis produced in part by decreased AVP and AQP1.  相似文献   

9.
Galanin (Gal) as a neuropeptide with widespread distribution in the central nervous system may be involved in the mechanisms of vasopressin (AVP) and oxytocin (OT) release from the hypothalamo-neurohypophysial system. Vasopressin and oxytocin content in the hypothalamus and neurohypophysis as well as plasma level of both neurohormones were studied after galanin treatment in euhydrated and dehydrated rats. In not dehydrated rats intracerebroventricular (i.c.v.) injections of Gal did not affect the hypothalamic and neurohypophysial OT content, however, distinctly increased plasma OT concentration. In the same animals Gal diminished the hypothalamic AVP content but was without the effect on neurohypophysial AVP storage; plasma AVP level then raised. Galanin, administered i.c.v. to rats deprived of water, distinctly inhibited AVP and OT release from the hypothalamo-neurohypophysial system. Simultaneously, plasma AVP and OT level was significantly diminished after Gal treatment in dehydrated rats. These results suggest that modulatory effect of galanin on vasopressin and oxytocin release depends on the actual state of water metabolism. Gal acts as an inhibitory neuromodulator of AVP and OT secretion under conditions of the dehydration but stimulates this process in the state of equilibrated water metabolism.  相似文献   

10.
Y Terashima  K Kondo  Y Oiso 《Life sciences》1999,64(16):1447-1453
Oxytocin (OT) binds to the vasopressin V2 receptor (V2R) because of its structural similarity to arginine vasopressin (AVP). Though the affinity of OT for V2R is low, it is known that OT causes antidiuresis. To clarify the effect of OT as an agonist of V2R, we investigated the influence of acute elevation of plasma OT levels on the rat mRNA expression of V2R and aquaporin-2 (AQP2), the water channel regulated by V2R. The plasma OT level increased from 11.1+/-1.6 pg/ml to 331.0+/-67.9 pg/ml by 1 h after subcutaneousinjection of 20 microg OT. V2R mRNA expression decreased to 68.3+/-4.1% of the control at 3 h, and AQP2 mRNA expression increased to 239.3+/-26.8% of the control at 6 h. The plasma AVP level did not change significantly during the experiment. The influence of a subcutaneous injection of 20 microg OT on V2R and AQP2 mRNA expression is comparable to that of 10 microg AVP that we documented in the previous study. In conclusion, OT can downregulate V2R mRNA expression and upregulate AQP2 mRNA expression in the collecting duct as an agonist of the V2R like AVP.  相似文献   

11.
Impaired regulation of salt and water balance in left ventricular dysfunction and heart failure can lead to pulmonary and peripheral edema and hyponatremia. Previous studies of disordered water regulation in heart failure have used models of low cardiac output with normal cardiac function (e.g., inferior vena cava ligation). We investigated thirst and vasopressin (AVP) secretion in a rat myocardial infarction model of chronic left ventricular dysfunction/heart failure in response to a 24-h water deprivation period. Thirst (implied from water drunk), hematocrit, plasma renin activity, and plasma AVP concentrations increased with water deprivation vs. ad libitum water access. Thirst and plasma AVP concentrations were significantly positively correlated with infarct size after 24-h water deprivation but not under ad libitum water access conditions. The mechanism by which this occurs is unclear but could involve increased osmoreceptor sensitivity, altered stimulation of baroreceptors, the renin-angiotensin system, or altered central neural control.  相似文献   

12.
Atrial natriuretic factor inhibits vasopressin secretion in conscious sheep   总被引:1,自引:0,他引:1  
To test the hypothesis that atrial natriuretic factor (ANF) has a centrally mediated action on body fluid homeostasis, the effects of intracerebroventricularly (ICV) infused ANF on plasma vasopressin (AVP) concentration and urinary water and electrolyte excretion were investigated in euhydrated and water-deprived conscious sheep. ICV ANF decreased plasma AVP concentration and increased urinary free water excretion in euhydrated sheep, with excretion of Na and K unaltered. However, ICV ANF did not affect urinary volume, free water clearance, or excretion of Na and K in dehydrated animals, although plasma AVP concentration was significantly decreased. The relationship between urine volume and plasma AVP concentration was fitted by a power curve: urine volume = 0.79 X [AVP]-0.71; urine volume changes very little as a function of AVP concentration at the higher ranges. Intravenous infusion of the same amount of ANF was without effect on plasma AVP concentration or urinary excretion in both euhydrated and dehydrated animals. Mean arterial pressure was unchanged throughout all experiments. These results are consistent with the hypothesis that central ANF inhibits AVP secretion.  相似文献   

13.
D M Gibbs 《Life sciences》1984,35(5):487-491
Oxytocin (OT), vasopressin (AVP), and corticotropin (ACTH) levels were measured in peripheral plasma of male rats subjected to one of three models of stress: restraint, cold, or ether. ACTH secretion was increased in all three groups compared to unstressed controls. OT secretion was increased in rats subjected to restraint or ether but not cold. AVP secretion was increased only by ether stress. The data suggest that the hypothalamic and neurohypophysial contribution to the control of ACTH secretion may vary in response to different types of stress.  相似文献   

14.
The placental leucine aminopeptidase (P-LAP)/oxytocinase is a membrane-bound enzyme thought to play an important role during pregnancy. In this study, we identified the presence of P-LAP protein in the renal distal tubules and collecting ducts. In rat NRK52E cells derived from renal tubules, P-LAP was localized mainly in the intracellular compartment. Upon the treatment of cells with 8-arginine-vasopressin (AVP), a significant increase in the surface level of P-LAP was observed. [deamino-Cys1, d-Arg8]-vasopressin (DDAVP), a specific V2 receptor agonist, increased the surface level of P-LAP, while [adamantaneacetyl1, O-Et-d-Tyr2, Val4, aminobutyryl6, Arg8,9]-vasopressin (AEAVP), a potent V2 receptor antagonist, blocked the AVP-stimulated enhancement. Moreover, reagents known to enhance the intracellular level of cAMP have also been shown to increase the surface level of P-LAP. When we examined the colocalization of P-LAP with the cell surface water channel aquaporin-2 (AQP-2) that is regulated by AVP, the P-LAP-containing vesicles had a relatively higher density than the AQP-2-containing vesicles, suggesting that P-LAP and AQP-2 are differently distributed in NRK52E cells. These results suggest that AVP induces the translocation of P-LAP via V2 receptor and P-LAP plays a role in the regulation of excessive AVP level in the renal collecting duct, acting as a negative feedback mechanism for the AVP action of regulating water reabsorption.  相似文献   

15.
Polito AB  Goldstein DL  Sanchez L  Cool DR  Morris M 《Peptides》2006,27(11):2877-2884
The objective was to characterize the urinary oxytocin (OT) system with the goal of using it as a biomarker for neurohypophyseal peptide secretion. We studied urinary OT secretion in mice under three conditions: (1) in OT gene deletion mice (OT -/-) which lack the ability to produce the peptide; (2) after arterial vascular infusion of OT and (3) after physiological stimulation with consumption of 2% sodium chloride. OT was measured by radioimmunoassay (RIA) and Surface-Enhanced Laser Desorption Ionization Time of Flight Mass Spectroscopy (SELDI TOF MS). In OT -/- mice (n=25), urinary OT levels were not detectable, while in OT +/+ mice (n=23) levels were 250.2+/-35.3 pg/ml. To evaluate blood/urine transfer, mice with chronic carotid arterial catheters were infused with saline or OT (5 or 20 pmol/min). Peak urine OT levels were 89+/-11.5 and 844+/-181 ng/ml in the low and high OT groups, respectively. Proteomic evaluation showed MS peaks, corresponding to OT ( approximately 1009 Da) and a related peptide ( approximately 1030 Da) with highest levels in mice infused with OT. Salt loading (5 days of 2% NaCl as drinking water) increased plasma osmolality (3.3%), increased plasma and urinary vasopressin (AVP), but caused no changes in OT. Thus, using non-invasive urine samples, we document that urinary OT and AVP can be used to monitor changes in peptide secretion. Urinary OT and AVP, as well as other urinary peptides, may provide a viable biomarker for peptide secretion and may be useful in clinical studies.  相似文献   

16.
To determine the role of arginine vasopressin (AVP) in stress-induced release of anterior pituitary hormones, AVP antiserum or normal rabbit serum (NRS) was micro-injected into the 3rd ventricle of freely-moving, ovariectomized (OVX) female rats. A single 3 microliter injection was given, and 24 hours later, the injection was repeated 30 min prior to application of ether stress for 1 min. Although AVP antiserum had no effect on basal plasma ACTH concentrations, the elevation of plasma ACTH induced by ether stress was lowered significantly. Plasma LH tended to increase following ether stress but not significantly so; however, plasma LH following stress was significantly lower in the AVP antiserum-treated group than in the group pre-treated with NRS. Ether stress lowered plasma growth hormone (GH) levels and this lowering was slightly but significantly antagonized by AVP antiserum. Ether stress also elevated plasma prolactin (Prl) levels but these changes were not significantly modified by the antiserum. To evaluate any direct action of AVP on pituitary hormone secretion, the peptide was incubated with dispersed anterior pituitary cells for 2 hours. A dose-related release of ACTH occurred in doses ranging from 10 ng (10 p mole)-10 micrograms/tube, but there was no effect of AVP on release of LH. The release of other anterior pituitary hormones was also not affected except for a significant stimulation of TSH release at a high dose of AVP. The results indicate that AVP is involved in induction of ACTH and LH release during stress. The inhibitory action of the AVP antiserum on ACTH release may be mediated intrahypothalamically by blocking the stimulatory action of AVP on corticotropin-releasing factor (CRF) neurons and/or also in part by direct blockade of the stimulatory action of vasopressin on the pituitary. The effects of vasopressin on LH release are presumably brought about by blockade of a stimulatory action of AVP on the LHRH neuronal terminals.  相似文献   

17.
The degree of water transport via aquaporin-2 (AQP2) water channels in renal collecting duct principal cells is reflected by the level of the urinary excretion of AQP2 (u-AQP2). In rats, the AQP2 expression varies with sodium intake. In humans, the effect of sodium intake on u-AQP2 and the underlying mechanisms have not previously been studied. We measured the effect of 4 days of high sodium (HS) intake (300 mmol sodium/day; 17.5 g salt/day) and 4 days of low sodium (LS) intake (30 mmol sodium/day; 1.8 g salt/day) on u-AQP2, fractional sodium excretion (FE(Na)), free water clearance (C(H2O)), urinary excretion of PGE(2) (u-PGE(2)) and cAMP (u-cAMP), and plasma concentrations of vasopressin (AVP), renin (PRC), ANG II, aldosterone (Aldo), atrial natriuretic peptide (ANP), and brain natriuretic peptide (BNP) in a randomized, crossover study of 21 healthy subjects, during 24-h urine collection and after hypertonic saline infusion. The 24-h urinary sodium excretion was significantly higher during HS intake (213 vs. 41 mmol/24 h). ANP and BNP were significantly lower and PRC, ANG II, and Aldo were significantly higher during LS intake. AVP, u-cAMP, and u-PGE(2) were similar during HS and LS intake, but u-AQP2 was significantly higher during HS intake. The increases in AVP and u-AQP2 in response to hypertonic saline infusion were similar during HS and LS intake. In conclusion, u-AQP2 was increased during HS intake, indicating that water transport via AQP2 was increased. The effect was mediated by an unknown AVP-independent mechanism.  相似文献   

18.
Central nervous system-derived adrenomedullin (AM) has been shown to be a physiological regulator of thirst. Administration of AM into the lateral ventricle of the brain attenuated water intake, whereas a decrease in endogenous AM, induced by an AM-specific ribozyme, led to exaggerated water intake. We hypothesized that central AM may control fluid homeostasis, in part by regulating plasma arginine vasopressin (AVP) levels. To test this hypothesis, AM or a ribozyme specific to AM was administered intracerebroventricularly, and alterations in plasma AVP concentrations were examined under basal and stimulated (hypovolemic) conditions. Additionally, we examined changes in blood volume, kidney function, and plasma electrolyte and protein levels, as well as changes in plasma aldosterone concentrations. Intracerebroventricular administration of AM increased plasma AVP levels, whereas AM ribozyme treatment led to decreased plasma AVP levels under stimulated conditions. During hypovolemic challenges, AM ribozyme treatment led to an increased loss of plasma volume compared with control animals. Although overall plasma osmolality did not differ between treatment groups during hypovolemia, aldosterone levels were significantly higher and, consequently, plasma potassium concentrations were lower in AM ribozyme-treated rats than in controls. These data suggest that brain-derived AM is a physiological regulator of vasopressin secretion and, thereby, fluid homeostasis.  相似文献   

19.
Aquaporin-2 (AQP-2) is the vasopressin-regulated water channel expressed in the apical membrane of principal cells in the collecting duct and is involved in the urinary concentrating mechanism. In the rat distal colon, vasopressin stimulates water absorption through an unknown mechanism. With the hypothesis that AQP-2 could contribute to this vasopressin effect, we studied its presence in rat colonic epithelium. We used RT-PCR, in situ hybridization, immunoblotting, and immunocytochemistry to probe for AQP-2 expression. An AQP-2 amplicon was obtained through RT-PCR of colon epithelium RNA, and in situ hybridization revealed AQP-2 mRNA in colonic crypts and, to a lesser extent, in surface absorptive epithelial cells. AQP-2 protein was localized to the apical membrane of surface absorptive epithelial cells, where it colocalized with H(+)-K(+)-ATPase but not with Na(+)-K(+)-ATPase. AQP-2 was absent from the small intestine, stomach, and liver. Water deprivation increased the hybridization signal and the protein level (assessed by Western blot analysis) for AQP-2 in distal colon. This was accompanied by increased p-chloromercuriphenylsulfonic acid-sensitive water absorption. These results indicate that AQP-2 is present in the rat distal colon, where it might be involved in a water-sparing mechanism. In addition, these results support the idea that AQP-2, and probably other aquaporins, are involved in water absorption in the colon.  相似文献   

20.
In the present study, we have examined in Wistar rats the effects of food or water deprivation of 3 days on the hypophyso-adrenal axis, vasopressinergic system and activity of A1 noradrenergic brain stem cell group, which is involved in the control of the hypothalamic neuro-endocrine activity. Levels of adrenocorticotropic hormone (ACTH) and vasopressin (AVP) were determined by radio-immunoassay, and corticosterone level was determined by fluorimetric method. Plasma levels of ACTH and corticosterone were greatly increased in both groups of rats. In water-deprived rats, plasma AVP (13.83 +/- 1.63 vs. 3.03 +/- 0.23 pg/ml) and osmolality levels were significantly elevated with a marked decrease of AVP hypophysis content (272 +/- 65 vs. 1098 +/- 75 ng/mg protein), but not in food-deprived rats in which osmolality did not change and AVP remained stocked (2082 +/- 216 ng/mg protein) in the hypophysis without release in the plasma (1.11 +/- 0.23 pg/ml). These observations indicated that both food-deprivation and water-deprivation stimulated the pituitary adrenal axis thereby suggesting a stress state. AVP production is stimulated both by fluid and food restriction but is secreted with differential effects: during food restriction AVP secretion is limited to supporting the hypothalamic pituitary-adrenal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号