首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa is a major cause of nosocomial pneumonia, which is associated with high morbidity and mortality. Because of its ubiquitous nature and its ability to develop resistance to antibiotics, it is a problematic pathogen from a treatment perspective. Platelet-activating factor receptor (PAFR) is involved in phagocytosis of several pathogens. To determine the role of PAFR in the innate immune response to P. aeruginosa pneumonia, pafr gene-deficient (PAFR-/-) mice and normal wild-type (Wt) mice were intranasally inoculated with P. aeruginosa. PAFR deficiency impaired host defense as reflected by increased bacterial outgrowth and dissemination in mice with a targeted deletion of the PAFR gene. PAFR-/- neutrophils showed a diminished phagocytosing capacity of P. aeruginosa in vitro. Relative to Wt mice, PAFR-/- mice demonstrated increased lung inflammation and injury as reflected by histopathology, relative lung weights and total protein concentrations in bronchoalveolar lavage fluid, which was accompanied by higher levels of proinflammatory cytokines in lung homogenates and plasma. In addition, PAFR deficiency was associated with exaggerated local and systemic activation of coagulation as determined by fibrin staining of lung tissue and pulmonary and plasma concentrations of thrombin-antithrombin complexes and D-dimer. These data suggest that PAFR is an essential component of an effective host response to P. aeruginosa pneumonia, at least partly via its contribution to the phagocytic properties of professional granulocytes. Additionally, our results indicate that PAFR signaling is not essential for the induction of a local and systemic inflammatory and procoagulant response to Pseudomonas pneumonia.  相似文献   

2.
Toll-like receptors (TLRs) are important for the activation of innate immune cells upon encounter of microbial pathogens. The present study investigated the potential roles of TLR2, TLR4, and the signaling protein myeloid differentiation factor 88 (MyD88) in polymicrobial septic peritonitis. Whereas both TLR2 and TLR4 were dispensable for host defense against septic peritonitis, MyD88-deficient mice were protected in this infection model. Recruitment of neutrophils to the septic focus and bacterial clearance were normal in MyD88-deficient mice. In contrast, the systemic inflammatory response was strongly attenuated in the absence of MyD88. Surprisingly, MyD88 deficiency did not alter cytokine and chemokine production in spleen, but markedly reduced the inflammatory response in liver and lung. Production of monocyte chemoattractant protein-1 and macrophage-inflammatory protein-1alpha was entirely independent of MyD88. These results imply a central role of MyD88 for the systemic immune pathology of polymicrobial sepsis and show that cytokine production in spleen and induction of certain chemokines are MyD88 independent.  相似文献   

3.
Toll-like receptors (TLR) induce distinct patterns of host responses through myeloid differentiation factor 88 (MyD88)-dependent and/or -independent pathways, depending on the nature of the pathogen. Pseudomonas aeruginosa is a cause of serious lung infection in immunocompromised individuals and cystic fibrosis patients. The role of the TLR-MyD88 pathway in P. aeruginosa-induced lung infection in vivo was examined in this study. MyD88-/- mice demonstrated an impaired clearance of P. aeruginosa from the lung. Little or no neutrophil recruitment was observed in the airways of MyD88-/- mice following P. aeruginosa lung infection. This observation was associated with a reduced production of inflammatory mediators that affect neutrophil recruitment, including macrophage-inflammatory protein-2, tumor necrosis factor, and interleukin-1beta in the airways of MyD88-/- mice. Similarly, MyD88-/- mice showed inhibited NF-kappaB activation in the lung following P. aeruginosa infection. Interestingly, P. aeruginosa infection induced a 7.5-fold increase of TLR2 mRNA expression in the lungs of MyD88+/+ mice. Furthermore, host responses to P. aeruginosa lung infection in TLR2-/- and TLR4 mutant mice were partially inhibited compared with the responses of respective control mice. Taken together, our results indicate that the MyD88-dependent pathway is essential for the development of early host responses to P. aeruginosa infection, leading to the clearance of this bacterium, and that TLR2 and TLR4 are involved in this process.  相似文献   

4.
In addition to their role in triggering innate immune responses, Toll-like receptors are proposed to play a key role in linking the innate and adaptive arms of the immune response. The majority of cellular responses downstream of Toll-like receptors are mediated through the adapter molecule myeloid differentiation factor 88 (MyD88), and mice with a targeted deletion of MyD88 are highly susceptible to bacterial infections, including primary infection with Listeria monocytogenes (LM). In contrast, herein we demonstrate that MyD88-deficient mice have only a modest impairment in their LM-specific CD4 T cell response, and no impairment in their CD8 T cell response following infection with ActA-deficient LM. Furthermore, CD8 T cells from immunized MyD88-deficient mice protected naive recipient mice following adoptive splenocyte transfer, and immunized MyD88-deficient mice were protected from infection with wild-type LM. These results indicate that adaptive immune responses can be generated and provide protective immunity in the absence of MyD88.  相似文献   

5.
Recent studies have suggested that IL-21 is a key factor in the development of IL-17-producing CD4 T cells (Th17) and that the induction of experimental autoimmune encephalomyelitis, which depends on mounting an efficient Th17 response, is reportedly impaired in the absence of IL-21 signaling. In this study, we provide supportive in vitro evidence that IL-21 can drive Th17 responses in conjunction with TGF-beta. However, more importantly we also demonstrate, using IL-21- and IL-21R-deficient mice, that IL-21 is not essential for the differentiation of Th17 cells in vitro and in vivo. Moreover, we show that IL-21- and IL-21R-deficient mice are highly susceptible to experimental autoimmune encephalomyelitis with disease scores that were comparable, or even higher at the peak of disease, to those of control mice. Thus, our results challenge the notion that IL-21 is a key factor in driving Th17 immunity and disease.  相似文献   

6.
7.
MUC1 (MUC1 in human and Muc1 in nonhumans) is a membrane-tethered mucin that interacts with Pseudomonas aeruginosa (PA) through flagellin. In this study, we compared PA pulmonary clearance and proinflammatory responses by Muc1(-/-) mice with Muc1(+/+) littermates following intranasal instillation of PA or flagellin. Compared with Muc1(+/+) mice, Muc1(-/-) mice showed increased PA clearance, greater airway recruitment of neutrophils, higher levels of TNF-alpha and KC in bronchoalveolar lavage fluid, higher levels of TNF-alpha in media of flagellin-stimulated alveolar macrophages, and higher levels of KC in media of tracheal epithelial cells. Knockdown of MUC1 enhanced flagellin-induced IL-8 production by primary human bronchial epithelial cells. Expression of MUC1 in HEK293T cells attenuated TLR5-dependent IL-8 release in response to flagellin, which was completely ablated when its cytoplasmic tail was deleted. We conclude that MUC1/Muc1 suppresses pulmonary innate immunity and speculate its anti-inflammatory activity may play an important modulatory role during microbial infection.  相似文献   

8.
Toll-like receptor (TLR) family acts as pattern recognition receptors for pathogen-specific molecular patterns. We previously showed that TLR2 recognizes Gram-positive bacterial components whereas TLR4 recognizes LPS, a component of Gram-negative bacteria. MyD88 is shown to be an adaptor molecule essential for TLR family signaling. To investigate the role of TLR family in host defense against Gram-positive bacteria, we infected TLR2- and MyD88-deficient mice with Staphylococcus aureus. Both TLR2- and MyD88-deficient mice were highly susceptible to S. aureus infection, with more enhanced susceptibility in MyD88-deficient mice. Peritoneal macrophages from MyD88-deficient mice did not produce any detectable levels of cytokines in response to S. aureus. In contrast, TLR2-deficient macrophages produced reduced, but significant, levels of the cytokines, and TLR4-deficient macrophages produced the same amounts as wild-type cells, indicating that S. aureus is recognized not only by TLR2, but also by other TLR family members except for TLR4.  相似文献   

9.
10.
Signaling pathways from TLRs are mediated by the Toll/IL-1R (TIR) domain-containing adaptor molecules. TNF receptor-associated factor (TRAF) 6 is thought to activate NF-kappaB and MAPKs downstream of these TIR domain-containing proteins to induce production of inflammatory cytokines. However, the precise role of TRAF6 in signaling from individual TLRs has not been appropriately addressed. We analyzed macrophages from TRAF6-deficient mice and made the following observations. In the absence of TRAF6, 1) ligands for TLR2, TLR5, TLR7, and TLR9 failed to induce activation of NF-kappaB and MAPKs or production of inflammatory cytokines; 2) TLR4 ligand-induced cytokine production was remarkably reduced and activation of NF-kappaB and MAPKs was observed, albeit with delayed kinetics; and 3) in contrast with previously reported findings, TLR3 signaling was not affected. These results indicate that TRAF6 is essential for MyD88-dependent signaling but is not required for TIR domain-containing adaptor-inducing IFN-beta (TRIF)-dependent signaling.  相似文献   

11.
CD1 molecules can present microbial lipid Ag to T cells, suggesting that they participate in host defense against pathogens. In this study, we examined the role of CD1d in resistance to infection with the Lyme disease spirochete, Borrelia burgdorferi (Bb), an organism with proinflammatory lipid Ag. Bb infection of CD1d-deficient (CD1d(-/-)) mouse strains normally resistant to this pathogen resulted in arthritis. Pathology correlated with an increased prevalence of spirochete DNA in tissues and enhanced production of Bb-specific IgG, including IgG to Ag rapidly down-modulated on spirochetes in vivo. CD1d(-/-) mice exhibited high-titer Bb-specific IgG2a, an isotype commonly induced in disease-susceptible mice but not in the disease-resistant control mice in this study. These results show that CD1d deficiency impairs host resistance to a spirochete pathogen, and are the first example of a mutation that imparts Bb-resistant mice with the Ab and disease profile of a susceptible mouse strain.  相似文献   

12.
Previous studies showed that methylxanthines increased the antimicrobial activity of gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. In this study, the effect of non-selective phosphodiesterase (PDE) inhibitors (methylxanthines: aminophylline and caffeine) and partially selective PDE inhibitors, dipyridamole and sildenafil, was evaluated on the antimicrobial activity of gentamicin using checkerboard method. Aminophylline at concentrations of 0.5 and 1 mg/ml reduced the minimal inhibitory concentration (MIC) of gentamicin (2 μg/ml) 2 and 4 times against S. aureus, and at concentrations of 0.5 and 2 mg/ml reduced the MIC of gentamicin (4 μg/ml) 2 and 4 times, respectively, against P. aeruginosa. Caffeine at concentrations of 1 and 2 mg/ml reduced the MIC of gentamicin (2 μg/ml) 4 and 32 times against S. aureus, and at concentrations of 0.12 and 2 mg/ml reduced the MIC of gentamicin (4 μg/ml) 2 and 4 times, respectively, against P. aeruginosa. However, dipyridamole and sildenafil (32 μg/ml) did not show any effect on MIC of gentamicin against S. aureus and P. aeruginosa. These results suggest that methylxanthines could increase gentamicin effects against S. aureus and P. aeruginosa but this effect is not mediated by inhibition of PDE 5, 6, 8, 10 and 11.  相似文献   

13.
14.
15.
The Pseudomonas aeruginosa type III secretion system (TTSS), enabling direct injection of toxins into host cells, has been shown to be crucial to virulence in several models of P. aeruginosa pathogenesis. Using the strain PA14 and its isogenic mutant, PA14exsA, we investigated the role of the TTSS during infection of the nematode Caenorhabditis elegans. Although C. elegans N2 was killed by PA14 in an infection like process over 48 to 72 h the same effect was observed following infection with PA14exsA, implying that a functional TTSS was not essential for virulence. This was despite the TTSS being actively expressed during C. elegans infection as demonstrated by the use of green fluorescent reporter constructs and RT-PCR. However, compared to the wild type PA14, PA14exsA did display a reduced rate of killing of C. elegans strain AU1 which harbours a mutation in the sek-1 gene encoding a MAP kinase involved in nematode innate immunity. A fuller understanding of the mechanism of resistance to type III attack in C. elegans may lead to the identification and development of novel therapeutic targets affording protection to TTSS products in man.  相似文献   

16.
Covalent linkage of immunostimulatory CpG DNA to OVA results in CpG DNA-aided cross-presentation of OVA by dendritic cells (DCs). In vivo, cross-presentation is conditional for cross-priming of OVA-specific CD8 T cells. In this study, we investigated the involvement of the CpG DNA receptor Toll-like receptor (TLR)9 in CpG DNA-aided cross-presentation and cross-priming. Although CpG DNA-aided cross-presentation is not altered in TLR9-deficient cells, TLR9 is required for maturation of APC allowing cross-priming, as resulting in CTL function. These findings imply that TLR9 does not trigger endocytosis of CpG-OVA conjugates, but activates DCs downstream of endocytosis.  相似文献   

17.
The biosynthesis of phosphatidylethanolamine was examined during differentiation of P19 teratocarcinoma cells into cardiac myocytes. P19 cells were induced to undergo differentiation into cardiac myocytes by the addition of dimethyl sulfoxide to the medium. Immunofluorescence labeling confirmed the expression of striated myosin 10 days postinduction of differentiation. The content of phosphatidylethanolamine increased significantly within the first 2 days of differentiation. [1,3-(3)H]Glycerol incorporation into phosphatidylethanolamine was increased 7.2-fold during differentiation, indicating an elevation in de novo synthesis from 1, 2-diacyl-sn-glycerol. The mechanism for the increase in phosphatidylethanolamine levels during cardiac cell differentiation was a 2.8-fold increase in the activity of ethanolaminephosphotransferase, the 1,2-diacyl-sn-glycerol utilizing reaction of the cytidine 5'-diphosphate-ethanolamine pathway of phosphatidylethanolamine biosynthesis. Incubation of P19 cells with the phosphatidylethanolamine biosynthesis inhibitor 8-(4-chlorophenylthio)-cAMP inhibited the differentiation-induced elevation in phosphatidylethanolamine levels but did not affect the expression of striated myosin. The results suggest that elevation in phosphatidylethanolamine is an early event of P19 cell differentiation into cardiac myocytes, but is not essential for differentiation to proceed.  相似文献   

18.
Controversy still exists regarding the biological function of granzyme serine proteases released with perforin from the cytotoxic granules of NK cells and CTLs. In particular, it is not clear whether the major granzymes, A and B, play an essential role in tumor rejection mediated by the perforin pathway. We have now examined the relative importance of perforin and granzyme A and B clusters in five different tumor models that stringently distinguish their importance. We conclude that granzyme A and B clusters are not essential for CTL- and NK cell-mediated rejection of spontaneous and experimental tumors, raising the likelihood that either perforin alone or in combination with an additional granzyme or granule component(s) mediates cytotoxicity of tumor cells in vivo.  相似文献   

19.
Recently, it has been demonstrated that stimulated T cells bearing defects in caspase-8 fail to promote nuclear shuttling of NF-kappaB complexes. Such cells display strikingly similar proliferative and survival defects as T cells lacking Fas-associated death domain protein (FADD) function. We characterized NF-kappaB signaling in T cells bearing a dominant-negative FADD transgene (FADDdd). Whereas FADDdd T cells displayed proliferative defects following activation, these were not a consequence of aberrant NF-kappaB signaling, as measured by IKK/IkappaB phosphorylation and IkappaB degradation. There were no appreciable defects in nuclear translocation of p65/Rel using ImageStream, a flow-based imaging cytometer. Pretreatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, a potent caspase inhibitor, also failed to impede canonical NF-kappaB signaling. Secretion of IL-2 and up-regulation of various activation markers occurred normally. Thus, FADD does not play an essential role in NF-kappaB activation, suggesting an alternative route by which this adaptor promotes the clonal expansion of T cells.  相似文献   

20.
The means by which Francisella tularensis, the causative agent of tularemia, are recognized by mammalian immune systems are poorly understood. Here we wished to explore the contribution of the MyD88/Toll-like receptor signaling pathway in initiating murine responses to F. tularensis Live Vaccine Strain (LVS). MyD88 knockout (KO) mice, but not TLR2-, TLR4- or TLR9-deficient mice, rapidly succumbed following in vivo bacterial infection via the intradermal route even with a very low dose of LVS (5 x 10(1)) that was 100,000-fold less than the LD(50) of normal wild-type (WT) mice. By day 5 after LVS infection, bacterial organ burdens were 5-6 logs higher in MyD88 knockout mice; further, unlike infected WT mice, levels of interferon-gamma in the sera of LVS-infected MyD88 KO were undetectable. An in vitro culture system was used to assess the ability of bone marrow macrophages derived from either KO or WT mice to support bacterial growth, or to control intracellular bacterial replication when co-cultured with immune lymphocytes. In this assay, bacterial replication was similar in macrophages derived from either WT or any of the TLR KO mice. Bacterial growth was controlled in co-cultures containing macrophages from MyD88 KO mice or TLR KO mice as well as in co-cultures containing immune WT splenic lymphocytes and WT macrophages. Further, MyD88-deficient LVS-immune splenocytes controlled intracellular growth comparably to those from normal mice. Thus MyD88 is essential for innate host resistance to LVS infection, but is not required for macrophage control of intracellular bacterial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号