首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Avirulence gene D, cloned from Pseudomonas syringae pv. tomato, caused P. s. pv. glycinea to elicit a hypersensitive defense response on certain cultivars of soybean. Nucleotide sequence data for a 5.6-kb HindIII fragment containing avrD disclosed five long open-reading frames (ORFs) occurring in tandem. The phenotype conferred by avrD was expressed in P. s. pv. glycinea solely by the first of these ORFs (933 bases) that encoded a protein of 34,115 daltons. Neither a signal peptide sequence nor significant regions of hydrophobicity were present that would indicate secretion of the protein or its membrane association. Hybridization analyses revealed that some but not all P. syringae pathovars contained DNA homologous to avrD. This included weak hybridization to all tested races of P. s. pv. glycinea, although none of them express the phenotype conferred by avrD. The avrD gene occurred on an indigenous 75-kb plasmid in several P. s. pv. tomato isolates.  相似文献   

2.
Two avirulence genes, avrB and avrC, from race 0 of Pseudomonas syringae pv. glycinea, were sequenced and found to encode single protein products of 36 and 39 kilodaltons, respectively. The proteins had neither recognizable signal peptide sequences nor significant stretches of hydrophobic amino acids that might indicate membrane association. Both avrB and avrC had relatively low position 3 and overall G+C contents, which suggests that they may have been recently introduced into P. syringae pv. glycinea. The deduced amino acid sequences of the proteins encoded by avrB and avrC shared 42% identical amino acids. However, when introduced into race 4 of P. syringae pv. glycinea, each gene directed a unique pattern of hypersensitive reactions on several differential soybean cultivars. The avrC protein was overproduced in Escherichia coli cells and deposited as insoluble inclusion bodies in the cell cytoplasm. The avrC protein could be solubilized with urea-octyl glucoside treatment, but neither the solubilized protein nor the intact inclusion bodies elicited a hypersensitive reaction in soybean leaves.  相似文献   

3.
Resistance of tomato plants to the bacterial pathogen Pseudomonas syringae pv. tomato race 0 is controlled by the locus Pto. A bacterial avirulence gene was cloned by constructing a cosmid library from an avirulent P. syringae pv. tomato race, conjugating the recombinants into a strain of P. syringae pv. maculicola virulent on a tomato cultivar containing Pto, and screening for those clones that converted the normally virulent phenotype to avirulence. The cloned gene, designated avrPto, reduced multiplication of P. syringae pv. tomato transconjugants specifically on Pto tomato lines, as demonstrated by bacterial growth curve analyses. Analysis of F2 populations revealed cosegregation of resistance to P. syringae pv. tomato transconjugants carrying avrPto with resistance to P. syringae pv. tomato race 0. Surprisingly, mutation of avrPto in P. syringae pv. tomato race 0 does not eliminate the avirulent phenotype of race 0, suggesting that additional, as yet uncharacterized, avirulence genes and/or resistance genes may contribute to specificity in the avrPto-Pto interaction. Genetic analysis indicates that this resistance gene(s) would be tightly linked to Pto. Interestingly, P. syringae pv. glycinea transconjugants carrying avrPto elicit a typical hypersensitive resistant response in the soybean cultivar Centennial, suggesting conservation of Pto function between two crop plants, tomato and soybean.  相似文献   

4.
A gene cloned from Xanthomonas campestris pv. vesicatoria race 2, avrBs1, specified avirulence on pepper cultivars containing the resistance gene Bs1. A series of exonuclease III deletions were made on a 3.2-kbp DNA fragment that determined full avirulence activity, observed as hypersensitive response (HR) induction. The deletion products were subcloned into the broad host range cloning vector pLAFR3, conjugated into a virulent X. c. pv. vesicatoria race 1 strain, 82-8, and scored for their ability to induce a HR on a pepper cultivar (ECW10R) containing the resistance gene Bs1. A span of approximately 1.8 kbp of DNA was necessary for full induction of the HR. The nucleotide sequence revealed two open reading frames (ORFs) capable of encoding proteins of 12.3 and 49.8 kD, designated ORF1 and ORF2, respectively. Deletions into ORF1 altered the HR-inducing activity to give an intermediate phenotype. Deletions into ORF2 completely destroyed activity. When the ORF2 coding region was driven by the lacZ promoter on plasmid pLAFR3 (placD), full avirulence activity was restored, indicating that ORF2 alone can induce the HR. Antisera raised to a beta-galactosidase-ORF2 fusion protein reacted with a 50-kD protein in X. c. pv. vesicatoria race 1 (placD) transconjugants. The deduced amino acid sequence of ORF2 had approximately 47% overall homology to the carboxyl terminus of the avirulence gene, avrA, isolated from Pseudomonas syringae pv. glycinea race 6, and 86% homology over a region of 49 amino acids. P. s. pv. glycinea, however, did not induce an HR on ECW10R plants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The gene for cultivar-specific avirulence to Phaseolus vulgaris cv. Tendergreen in races 3 and 4 of Pseudomonas syringae pv. phaseolicola was isolated and sequenced. Genomic clones from libraries of race 3 in pLAFR1 and race 4 in pLAFR3, which altered the phenotype of race 5 from virulent to avirulent in Tendergreen, were found to possess a common approximately 15-kb region of DNA that contained the determinant of avirulence. Subcloning and insertion mutagenesis with Tn1000 located an avirulence gene within a 1.4-kb BglII/HindIII DNA fragment in races 3 and 4. Comparison of the nucleotide sequences of regions of DNA that confer avirulence confirmed that both races have an identical gene for avirulence (designated avrPph3) comprising 801 base pairs (bp) and predicted to encode a cytoplasmic protein of 28,703 Da. A sequence, TGCAACCGAAT, 91% homologous to the motif found in promoter regions of avrB and avrD from P. s. pv. glycinea was located 89-99 bp upstream of the start of the open-reading frame 1. Hybridization experiments showed that avrPph3 was not plasmid-borne and was absent from isolates of P. s. pv. phaseolicola races 1, 2, 5, 6, 7, and 8, P. cichorii, P. s. pvs. coronafaciens, glycinea, maculicola, pisi, syringae, and tabaci. Cosegregation studies of crosses between cultivars resistant (Tendergreen) and susceptible (Canadian Wonder) to races 3 and 4 and transconjugants of race 5 confirmed that a gene-for-gene relationship controls specificity in the interaction between Tendergreen and races 3 and 4 of P. s. pv. phaseolicola.  相似文献   

6.
avrB and avrC from Pseudomonas syringae pv. glycinea share significant amino acid homology but interact with different soybean resistance genes to elicit the hypersensitive defense reaction. Recombinant genes constructed between avrB and avrC revealed that the central regions were required for avirulence gene activity but the 5' and 3' termini were interchangeable. Recombinants involving the central regions did not yield any detectable avirulence gene activity, and no new avirulence phenotypes were observed from any of the chimeric genes. These results suggest that the protein products of avrB and avrC possess catalytic properties that are required for the avirulence phenotypes.  相似文献   

7.
A gene was previously cloned from Pseudomonas syringae pv. glycinea race 6, designated avirulence gene A (avrA), that controls the expression of virulence by the pathogen on specific cultivars of soybean. A 3.2-kilobase (kb) AccI subclone from the cosmid clone pPg6L3 was shown to be active when cloned into the broad-host-range vector pRK404. Transposon Tn5 mutagenesis and deletion analysis delineated a span of approximately 2.5 kb of DNA that was necessary for gene activity. The nucleotide sequence of a 3.409-kb segment of DNA which contained the avrA gene has been determined. An open reading frame of 2.721 kb of DNA, which correlates with the region of DNA defined by transposon mutagenesis and deletion analysis, was identified. The open reading frame would encode a protein of 100.866 kilodaltons, which is in good agreement with the 100-kilodalton protein expressed by Escherichia coli maxicells.  相似文献   

8.
Strains of Xanthomonas campestris pv. vesicatoria that were avirulent in tomato leaves but virulent in pepper leaves were identified. A cloned gene, avrBsP, from one of the strains, Xv 87-7, converted a virulent strain in tomato to avirulent in tomato. A 1.7-kb subclone containing the avirulence gene cross-hybridized with the avirulence gene, which determines race 1 within the pepper group of strains (avrBs3). However, the two avirulence genes differ in their biological activity. The base sequences of the two avirulence genes were almost identical through the 1.7-kb segment of avrBsP, with significant differences only in some bases in the repeat region.  相似文献   

9.
A wide-host-range cosmid cloning vector, pLAFR3, was constructed and used to make cosmid libraries of partially digested Sau3A DNA from race 0 and race 1 of Pseudomonas syringae pv. glycinea. Two avirulence genes, avrB0 and avrC, cloned from race 0, elicited the hypersensitivity reaction (HR) on specific cultivars of soybean. Race 4 transconjugants containing avrB0 induced a dark brown necrotic HR within 24 h on the soybean cultivars Harosoy and Norchief, whereas race 4 transconjugants containing avrC induced a light brown necrotic HR within 48 h on the soybean cultivars Acme, Peking, Norchief, and Flambeau. An additional avirulence gene, avrB1, cloned from race 1, appeared to be identical to avrB0 from race 0. The avrB0 and avrC genes from race 0 were characterized by restriction enzyme mapping, Southern blot analysis, Tn5 transposon mutagenesis, and site-directed gene replacements. The effects of these three genes on the in planta bacterial growth of race 4 transconjugants have also been examined. The identification and cloning of avrB1 provides genetic evidence for a gene-for-gene interaction in the bacterial blight disease of soybean, as avrB1 from race 1 interacts with the soybean disease resistance locus, Rpg1.  相似文献   

10.
Soybean mosaic virus (SMV) was adapted for transgene expression in soybean and used to examine the function of avirulence genes avrB and avrPto of Pseudomonas syringae pvs. glycinea and tomato, respectively. A cloning site was introduced between the P1 and HC-Pro genes in 35S-driven infectious cDNAs of strains SMV-N and SMV-G7. Insertion of the uidA gene or the green fluorescent protein gene into either modified cDNA and bombardment into primary leaves resulted in systemic expression that reflected the pattern of viral movement into uninoculated leaves. Insertion of avrB blocked symptom development and detectable viral movement in cv. Harosoy, which carries the Rpg1-b resistance gene corresponding to avrB, but not in cvs. Keburi or Hurrelbrink, which lack Rpg1-b. In Keburi and Hurrelbrink, symptoms caused by SMV carrying avrB appeared more quickly and were more severe than those caused by the virus without avrB. Insertion of avrPto enhanced symptoms in Harosoy, Hurrelbrink, and Keburi. This result was unexpected because avrPto was reported to confer avirulence on P. syringae pv. glycinea inoculated to Harosoy. We inoculated Harosoy with P syringae pv. glycinea expressing avrPto, but observed no hypersensitive reaction, avrPto-dependent induction of pathogenesis-related protein la, or limitation of bacterial population growth. In Hurrelbrink, avrPto enhanced bacterial multiplication and exacerbated symptoms. Our results establish SMV as an expression vector for soybean. They demonstrate that resistance triggered by avrB is effective against SMV, and that avrB and avrPto have general virulence effects in soybean. The results also led to a reevaluation of the reported avirulence activity of avrPto in this plant.  相似文献   

11.
12.
Pectate lyase (PL) is a potent cell wall-degrading enzyme known to play a role in the microbial infection of plants. We re-examined the pectolytic property of seven representative pathovars of Pseudomonas syringae. None of the 10 P. syringae pv. glycinea strains examined exhibited pectolytic activity. However, the PL gene (pel) was detected by Southern hybridization in four out of four P. syringae pv. glycinea strains examined. A P. syringae pv. glycinea pel gene was cloned, sequenced, and predicted to encode a protein sharing 70%-90% identity in amino acid sequence with PLs produced by pectolytic pseudomonads and xanthomonads. A series of amino acid and nucleotide sequence analyses reveal that (i) the predicted P. syringae pv. glycinea PL contains two regions in the amino acid sequence that may affect the formation of a beta-helix structure important for the enzyme activity, and (ii) the P. syringae pv. glycinea pel gene contains a single-base insertion, a double-base insertion, and an 18-bp deletion, which can lead to the synthesis of an inactive PL protein. The function of P. syringae pv. glycinea PL could be restored by removing the unwanted base insertions and by filling in the 18-bp deletions by site-directed mutagenesis. The altered pel sequence was also detected by polymerase chain reaction and nucleotide sequencing in the genomes of other pathovars of P. syringae, including phaseolicola and tagetis.  相似文献   

13.
为了研究Ⅲ型泌出效应因子在丁香假单胞大豆致病变种中的作用,利用反向PCR技术,首次从丁香假单胞大豆致病变种全基因组中克隆得到两个效应因子HopAB1和HopAF1基因的同源物,分别命名为HopAB1s和HopAF1s。生物信息学分析表明,HopAB1s基因全长是1 572 bp,编码523个氨基酸;HopAF1s基因全长是855 bp,编码284个氨基酸。即基因的登录号分别为JF826562和JF826563。保守功能区预测显示HopAB1s在N末端包含一个E3泛素连接酶功能区。将这2个基因克隆到PVX二元表达载体并转化农杆菌,利用农杆菌介导的瞬时侵染技术在本生烟中表达,发现2个效应因子均能抑制由鼠凋亡因子激发的细胞程序性死亡;将烟草疫霉接种在表达效应基因的区域,发现效应因子能促进烟草疫霉侵染烟草,因此本研究得到的两个效应因子是免疫抑制因子,为进一步研究该菌的致病机理奠定基础。  相似文献   

14.
A novel avirulence gene was cloned from Xanthomonas oryzae pv. oryzae strain PX0339, which is the standard representative of the Philippines race 9a. The full-length gene spans 2118 bp and encodes a protein of 705 amino acids. BLAST search in NCBI indicated that the gene belongs to avrBs3 gene family, and designated arp3 (AvrBs3-related protein 3, arp3). The central region of the arp3 contains only 5.5 copies of 102bp repeats, the smallest copy number of repeats found in avrBs3 gene family by now. Together with the repeats is heptad repeats, resembling leucine zippers. Three functional nuclear localization signals and an acidic activation domain are also found in the C-terminal region. However, the arp3 lacks of two segments in its N-terminal region, which is unique in avrBs3 gene family. Southern blotting data showed that the arp3 is present as a single-copy in genomic DNA of PX0339 and locus in plasmid clone. The arp3 could be expressed in vitro in Escherichia coli BL21 and a 128kDa fusion protein was detected by Western analysis.  相似文献   

15.
To develop a model system for molecular genetic analysis of plant-pathogen interactions, we studied the interaction between Arabidopsis thaliana and the bacterial pathogen Pseudomonas syringae pv tomato (Pst). Pst strains were found to be virulent or avirulent on specific Arabidopsis ecotypes, and single ecotypes were resistant to some Pst strains and susceptible to others. In many plant-pathogen interactions, disease resistance is controlled by the simultaneous presence of single plant resistance genes and single pathogen avirulence genes. Therefore, we tested whether avirulence genes in Pst controlled induction of resistance in Arabidopsis. Cosmids that determine avirulence were isolated from Pst genomic libraries, and the Pst avirulence locus avrRpt2 was defined. This allowed us to construct pathogens that differed only by the presence or absence of a single putative avirulence gene. We found that Arabidopsis ecotype Col-0 was susceptible to Pst strain DC3000 but resistant to the same strain carrying avrRpt2, suggesting that a single locus in Col-0 determines resistance. As a first step toward genetically mapping the postulated resistance locus, an ecotype susceptible to infection by DC3000 carrying avrRpt2 was identified. The avrRpt2 locus from Pst was also moved into virulent strains of the soybean pathogen P. syringae pv glycinea to test whether this locus could determine avirulence on soybean. The resulting strains induced a resistant response in a cultivar-specific manner, suggesting that similar resistance mechanisms may function in Arabidopsis and soybean.  相似文献   

16.
A new disease resistance locus in Arabidopsis, RPS3 , was identified using a previously cloned avirulence gene from a non- Arabidopsis pathogen. The avrB avirulence gene from the soybean pathogen Pseudomonas syringae pv. glycinea was transferred into a P. syringae pv. tomato strain that is virulent on Arabidopsis , and conversion to avirulence was assayed on Arabidopsis plants. The avrB gene had avirulence activity on most, but not all, Arabidopsis ecotypes. Of 53 ecotypes examined, 45 were resistant to a P. syringae pv. tomato strain carrying avrB , and eight were susceptible. The inheritance of this resistance was examined using crosses between the resistant ecotype Col-0 and the susceptible ecotype Bla-2. In F2 plants from this cross, the ratio of resistant:susceptible plants was approximately 3:1, indicating that resistance to P. syringae expressing avrB is determined by a single dominant locus in ecotype Col-0, which we have designated RPS3 . Using RFLP analysis, RPS3 was mapped to chromosome 3, adjacent to markers M583 and G4523, and ≤ 1 cM from another disease resistance locus, RPM1 . In soybean, resistance to P. syringae strains that carry avrB is controlled by the locus RPG1 . Thus, RPG1 and RPS3 both confer avrB -specific disease resistance, suggesting that these genes may be homologs.  相似文献   

17.
大豆细菌性斑点病菌harpin编码基因的克隆与表达   总被引:1,自引:0,他引:1  
摘要:【方法、目的】利用PCR方法从丁香假单胞菌大豆致病变种(Pseudomonas syringae pv. glycinea)Psg12菌株中克隆到1026bp的hrp基因。将其定向插入到表达载体pGEX-4T-1上,并转化宿主菌BL21,IPTG诱导表达后,SDS-PAGE显示其表达产物为分子量为61 kDa的融合蛋白质。【结果】该蛋白质在性质与功能上类似于已发现的harpins,即富含甘氨酸、不含半胱氨酸,热稳定以及对蛋白酶K敏感,能够在烟草上引起典型的过敏性反应,过敏性反应还可被真核生物代谢抑制  相似文献   

18.
Production of the chlorosis-inducing phytotoxin coronatine in the Pseudomonas syringae pathovars atropurpurea, glycinea, maculicola, morsprunorum, and tomato has been previously reported. DNA hybridization studies previously indicated that the coronatine biosynthetic gene cluster is highly conserved among P. syringae strains which produce the toxin. In the present study, two 17-bp oligonucleotide primers derived from the coronatine biosynthetic gene cluster of P. syringae pv. glycinea PG4180 were investigated for their ability to detect coronatine-producing P. syringae strains by PCR analysis. The primer set amplified diagnostic 0.65-kb PCR products from genomic DNAs of five different coronatine-producing pathovars of P. syringae. The 0.65-kb products were not detected when PCR experiments utilized nucleic acids of nonproducers of coronatine or those of bacteria not previously investigated for coronatine production. When the 0.65-kb PCR products were digested with ClaI, PstI, and SmaI, fragments of identical size were obtained for the five different pathovars of P. syringae. A restriction fragment length polymorphism was detected in the amplified region of P. syringae pv. atropurpurea, since this pathovar lacked a conserved PvuI site which was detected in the PCR products of the other four pathovars. The 0.65-kb PCR products from six strains comprising five different pathovars of P. syringae were cloned and sequenced. The PCR products from two different P. syringae pv. glycinea strains contained identical DNA sequences, and these showed relatedness to the sequence obtained for the pathovar morsprunorum. The PCR products obtained from the pathovars maculicola and tomato were the most similar to each other, which supports the hypothesis that these two pathovars are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
avrPto in Pseudomonas syringae pv. tomato encodes an avirulence protein that triggers race-specific resistance in tomato plants carrying Pto. The AvrPto protein is secreted from P. syringae pv. tomato to plant cells through the type III secretion pathway and activates race-specific resistance by a direct interaction with the Pto protein. Here we report that avrPto enhances the virulence of P. syringae pv. tomato in a strain-dependent manner in tomato plants lacking Pto. To determine whether the virulence function can be structurally separated from the avirulence function, we examined the virulence activity of a group of AvrPto mutants that carry single amino acid substitutions and lack the avirulence activity on tomato plants. Three mutants that were clustered in the center of AvrPto exhibited virulence activity in tomato plants with or without Pto. The rest of the mutations abolished the virulence. The identification of these mutants suggested that the avirulence function of AvrPto can be structurally separated from the virulence function.  相似文献   

20.
The HopPtoF locus in Pseudomonas syringae pv. tomato DC3000 harbors two genes, ShcF and HopF2 (previously named ShcF(Pto) and HopF(Pto)), that encode a type III chaperone and a cognate effector protein, respectively. The HopF2 gene has a rare initiation codon, ATA that was reported to be functional only in mitochondrial genes. Here, we report that the native HopPtoF locus of DC3000 confers an avirulence function in tobacco W38 plants, indicating that the ATA start codon directs the synthesis of a functional effector. However, disruption of HopF2 in DC3000 genome did not alter the bacterial virulence in tomato plants. The HopPtoF locus displayed a measurable virulence activity in two strains of P. syringae pv. tomato when the ATA start codon was changed to ATG, and this change also elevated the avirulence function in W38 plants. HopF2 contains a putative myristoylation site. Mutational analysis indicated that this site is required for plasma membrane localization and virulence and avirulence activities of HopF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号