首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anterior cruciate ligament (ACL) injury is one of the most common serious lower-extremity injuries experienced by athletes participating in field and court sports and often occurs during a sudden change in direction or pivot. Both lateral trunk positioning during cutting and peak external knee abduction moments have been associated with ACL injury risk, though it is not known how core muscle activation influences these variables. In this study, the association between core muscle pre-activation and trunk position as well as the association between core muscle pre-activation and peak knee abduction moment during an unanticipated run-to-cut maneuver were investigated in 46 uninjured individuals. Average co-contraction indices and percent differences between muscle pairs were calculated prior to initial contact for internal obliques, external obliques, and L5 extensors using surface electromyography. Outside tilt of the trunk was defined as positive when the trunk was angled away from the cutting direction. No significant associations were found between pre-activations of core muscles and outside tilt of the trunk. Greater average co-contraction index of the L5 extensors was associated with greater peak knee abduction moment (p=0.0107). Increased co-contraction of the L5 extensors before foot contact could influence peak knee abduction moment by stiffening the spine, limiting sagittal plane trunk flexion (a motion pattern previously linked to ACL injury risk) and upper body kinetic energy absorption by the core during weight acceptance.  相似文献   

2.
This study examined whether lower limb muscle synchrony during abrupt landings was affected by gender, thereby predisposing females to a higher incidence of non-contact anterior cruciate ligament (ACL) injuries than males. Seven males and 11 females landed in single-limb stance on a force platform after receiving a chest-height netball pass and decelerating abruptly. Ground reaction force and electromyographic data for rectus femoris, vastus lateralis, vastus medialis, semimembranosus (SM), biceps femoris, and gastrocnemius were sampled (1000 Hz) during landing. Subjects' sagittal plane motion was also filmed (200 Hz). Knee joint reaction forces and sagittal planar net moments of force were estimated using Newtonian equations of motion and inverse dynamics. Tibiofemoral shear forces (F(s)) were obtained and muscle bursts temporally analysed with respect to initial foot-ground contact (IC) and peak F(s) times. Males displayed significantly delayed SM onset relative to IC (113+/-46 ms) compared to females (173+/-54 ms; p=0.03), and significantly delayed SM peak activity relative to peak F(s) (54+/-27 ms) compared to females (77+/-15 ms; p=0.03). Delayed SM activity during landing was suggested to allow peak muscle activity to better coincide with high anterior F(s), thereby acting as an ACL synergist via increased joint compression and posterior tibial drawer. It was concluded that females displayed muscle synchrony less protective of the ACL than males, possibly increasing their susceptibility to non-contact ACL injuries.  相似文献   

3.
The effect of muscle length on neural drive (here termed "neural activation") was investigated from electromyographic activities and activation levels (twitch interpolation). The neural activation was measured in nine men during isometric and concentric (30 and 120 degrees /s) knee extensions for three muscle lengths (35, 55, and 75 degrees knee flexion, i.e., shortened, intermediate, and lengthened muscles, respectively). Long (76 degrees ), medium (56 degrees ), and short (36 degrees ) ranges of motion were used to investigate the effect of the duration of concentric contraction. Neural activation was found to depend on muscle length. Reducing the duration of contraction had no effect. Neural activation was higher with short muscle length during isometric contractions and was weaker for shortened than for intermediate and lengthened muscles performing 120 degrees /s concentric contractions. Muscle length had no effect on 30 degrees /s concentric neural activation. Peripheral mechanisms and discharge properties of the motoneurons could partly explain the observed differences in the muscle length effect. We thus conclude that muscle length has a predominant effect on neural activation that would modulate the angular velocity dependency.  相似文献   

4.
Voluntary activation levels during lengthening, isometric, and shortening contractions (angular velocity 60 degrees/s) were investigated by using electrical stimulation of the femoral nerve (triplet, 300 Hz) superimposed on maximal efforts. Recruitment of fiber populations was investigated by using the phosphocreatine-to-creatine ratio (PCr/Cr) of single characterized muscle fibers obtained from needle biopsies at rest and immediately after a series of 10 lengthening, isometric, and shortening contractions (1 s on/1 s off). Maximal voluntary torque was significantly higher during lengthening (270 +/- 55 N.m) compared with shortening contractions (199 +/- 47 N.m, P < 0.05) but was not different from isometric contractions (252 +/- 47 N.m). Isometric torque was higher than torque during shortening (P < 0.05). Voluntary activation level during maximal attempted lengthening contractions (79 +/- 8%) was significantly lower compared with isometric (93 +/- 5%) and shortening contractions (92 +/- 3%, P < 0.05). Mean PCr/Cr values of all fibers from all subjects at rest were 2.5 +/- 0.6, 2.0 +/- 0.7, and 2.0 +/- 0.7, respectively, for type I, IIa, and IIax fibers. After 10 contractions, the mean PCr/Cr values for grouped fiber populations (regardless of fiber type) were all significantly different from rest (1.3 +/- 0.2, 0.7 +/- 0.3, and 0.8 +/- 0.6 for lengthening, isometric, and shortening contractions, respectively; P < 0.05). The cumulative distributions of individual fiber populations after either contraction mode were significantly different from rest (P < 0.05). Curves after lengthening contractions were less shifted compared with curves from isometric and shortening contractions (P < 0.05), with a smaller shift for the type IIax compared with type I fibers in the lengthening contractions. The results indicate a reduced voluntary drive during lengthening contractions. PCr/Cr values of single fibers indicated a hierarchical order of recruitment of all fiber populations during maximal attempted lengthening contractions.  相似文献   

5.
The central tenet of this study was to develop, validate and apply various individualised 3D musculoskeletal models of the human body for application to single-leg landings over increasing vertical heights and horizontal distances. While contributing to an understanding of whether gender differences explain the higher rate of non-contact anterior cruciate ligament (ACL) injuries among females, this study also correlated various musculoskeletal variables significantly impacted by gender, height and/or distance and their interactions with two ACL injury-risk predictor variables; peak vertical ground reaction force (VGRF) and peak proximal tibia anterior shear force (PTASF). Kinematic, kinetic and electromyography data of three male and three female subjects were measured. Results revealed no significant gender differences in the musculoskeletal variables tested except peak VGRF (p = 0.039) and hip axial compressive force (p = 0.032). The quadriceps and the gastrocnemius muscle forces had significant correlations with peak PTASF (r = 0.85, p < 0.05 and r = ? 0.88, p < 0.05, respectively). Furthermore, hamstring muscle force was significantly correlated with peak VGRF (r = ? 0.90, p < 0.05). The ankle flexion angle was significantly correlated with peak PTASF (r = ? 0.82, p < 0.05). Our findings indicate that compared to males, females did not exhibit significantly different muscle forces, or ankle, knee and hip flexion angles during single-leg landings that would explain the gender bias in non-contact ACL injury rate. Our results also suggest that higher quadriceps muscle force increases the risk, while higher hamstring and gastrocnemius muscle forces as well as ankle flexion angle reduce the risk of non-contact ACL injury.  相似文献   

6.
This study investigated the effect of hamstring co-contraction with quadriceps on the kinematics of the human knee joint and the in-situ forces in the anterior cruciate ligament (ACL) during a simulated isometric extension motion of the knee. Cadaveric human knee specimens (n = 10) were tested using the robotic universal force moment sensor (UFS) system and measurements of knee kinematics and in-situ forces in the ACL were based on reference positions on the path of passive flexion/extension motion of the knee. With an isolated 200 N quadriceps load, the knee underwent anterior and lateral tibial translation as well as internal tibial rotation with respect to the femur. Both translation and rotation increased when the knee was flexed from full extension to 30 of flexion; with further flexion, these motion decreased. The addition of 80 N antagonistic hamstrings load significantly reduced both anterior and lateral tibial translation as well as internal tibial rotation at knee flexion angles tested except at full extension. At 30 of flexion, the anterior tibial translation, lateral tibial translation, and internal tibial rotation were significantly reduced by 18, 46, and 30%, respectively (p<0.05). The in-situ forces in the ACL under the quadriceps load were found to increase from 27.8+/-9.3 N at full extension to a maximum of 44.9+/-13.8 N at 15 of flexion and then decrease to 10 N beyond 60 of flexion. The in-situ force at 15 was significantly higher than that at other flexion angles (p<0.05). The addition of the hamstring load of 80 N significantly reduced the in-situ forces in the ACL at 15, 30 and 60 of flexion by 30, 43, and 44%, respectively (p<0.05). These data demonstrate that maximum knee motion may not necessarily correspond to the highest in-situ forces in the ACL. The data also suggest that hamstring co-contraction with quadriceps is effective in reducing excessive forces in the ACL particularly between 15 and 60 of knee flexion.  相似文献   

7.
Muscle fatigue is both multifactorial and task dependent. Electrical stimulation may assist individuals with paralysis to perform functional activities [functional electrical stimulation (FES), e.g., standing or walking], but muscle fatigue is a limiting factor. One method of optimizing force is to use stimulation patterns that exploit the catchlike property of skeletal muscle [catchlike-inducing trains (CITs)]. Although nonisometric (dynamic) contractions are important parts of both normal physiological activation of skeletal muscles and FES, no previous studies have attempted to identify the effect that the load being lifted by a muscle has on the fatigue produced. This study examined the effects of load on fatigue during dynamic contractions and the augmentation produced by CITs as a function of load. Knee extension in healthy subjects was electrically elicited against three different loads. The highest load produced the least excursion, work, and average power, but it produced the greatest fatigue. CIT augmentation was greatest at the highest load and increased with fatigue. Because CITs were effective during shortening contractions for a variety of loads, they may be of benefit during FES applications.  相似文献   

8.
9.
The relationship between muscle deoxygenation and activation was examined in three different muscles of the quadriceps during cycling ramp exercise. Seven young male adults (24 ± 3 yr; mean ± SD) pedaled at 60 rpm to exhaustion, with a work rate (WR) increase of 20 W/min. Pulmonary oxygen uptake was measured breath-by-breath, while muscle deoxygenation (HHb) and activity were measured by time-resolved near-infrared spectroscopy (NIRS) and surface electromyography (EMG), respectively, at the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM). Muscle deoxygenation was corrected for adipose tissue thickness and normalized to the amplitude of the HHb response, while EMG signals were integrated (iEMG) and normalized to the maximum iEMG determined from maximal voluntary contractions. Muscle deoxygenation and activation were then plotted as a percentage of maximal work rate (%WR(max)). The HHb response for all three muscle groups was fitted by a sigmoid function, which was determined as the best fitting model. The c/d parameter for the sigmoid fit (representing the %WR(max) at 50% of the total amplitude of the HHb response) was similar between VL (47 ± 12% WR(max)) and VM (43 ± 11% WR(max)), yet greater (P < 0.05) for RF (65 ± 13% WR(max)), demonstrating a "right shift" of the HHb response compared with VL and VM. The iEMG also showed that muscle activation of the RF muscle was lower (P < 0.05) compared with VL and VM throughout the majority of the ramp exercise, which may explain the different HHb response in RF. Therefore, these data suggest that the sigmoid function can be used to model the HHb response in different muscles of the quadriceps; however, simultaneous measures of muscle activation are also needed for the HHb response to be properly interpreted during cycle ramp exercise.  相似文献   

10.
The purpose of this study was to assess the effects of contraction intensity, gender, and muscle on median frequency of the three superficial portions of the quadriceps femoris muscle. Thirty healthy volunteers were assessed for isometric electromyogram activity of the vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscles with the knee at 60 degrees flexion. Subjects performed 5-s isometric contractions at 10, 20, 30, 40, 50, 60, 70, 80, and 90% of the average of three maximal voluntary contractions. Median frequency (f(med)) of the three muscles was assessed through a power spectral analysis performed over 11 consecutive 512-ms epochs overlapping each other by one-half their length. The f(med) for each of the 11 epochs was then determined, followed by calculation of the mean and SD. The major findings of this study demonstrated that overall f(med) was significantly highest for the VL and lowest for the VM, whereas RF f(med) was between that of the other two muscles. Similar findings were observed for f(med) variability as the VL was significantly higher than the VM and RF, with no gender differences or differences between the latter two muscles. The results demonstrate that the largest change in f(med) as a function of contraction intensity occurred for the VL in men (18.6%) and women (7.6%). These findings suggest that muscle fiber-type homogeneity may exist in the VM and RF, which displayed negligible changes in f(med), whereas the VL may possess greater morphological variability.  相似文献   

11.
Five healthy male subjects exercised for 3 min at a workload equivalent to 100% VO2max on two separate occasions. Each exercise test was performed on an electrically braked cycle ergometer after a four-day period of dietary manipulation. During each of these periods subjects consumed either a low carbohydrate (3 +/- 0%, mean +/- SD), high fat (73 +/- 2%), high protein (24 +/- 3%) diet (FP) or a high carbohydrate (82 +/- 1%), low fat (8 +/- 1%) low protein (10 +/- 1%) diet (CHO). The diets were isoenergetic and were assigned in a randomised manner. Muscle biopsy samples (Vastus lateralis) were taken at rest prior to dietary manipulation, immediately prior to exercise and immediately post-exercise for measurement of pH, glycogen, glucose 6-phosphate, fructose 1,6-diphosphate, triose phosphates, lactate and glutamine content. Blood acid-base status and selected metabolites were measured in arterialised venous samples at rest prior to dietary manipulation, immediately prior to exercise and at pre-determined intervals during the post-exercise period. There was no differences between the two treatments in blood acid-base status at rest prior to dietary manipulation; immediately prior to exercise plasma pH (p less than 0.01), blood PCO2 (p less than 0.01), plasma bicarbonate (p less than 0.001) and blood base-excess (p less than 0.001) values were all lower on the FP treatment. There were no major differences in blood acid-base variables between the two diets during the post-exercise period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
High precision demands in manual tasks can be expected to cause more selective use of a part of the muscular synergy involved. To test this expectation, load sharing of the index finger and middle finger was investigated during a pinching task. Myoelectric activation of lower arm and neck-shoulder muscles was measured to see if overall level of effort was affected by precision demands. Ten healthy female subjects performed pinching tasks with three levels of force and three levels of precision demands. The force level did not significantly affect the relative contribution of the index and middle finger to the force. Higher precision demands, however, led to higher contribution of the index finger to the pinch force. Consequently, a more selective load of the forearm and hand occurs during tasks with high precision demands. The variability of the force contribution of the fingers increased during the task. No effects of precision demand on the activation of forearm and neck-shoulder muscles were found. Force level did affect the EMG parameters of several muscles. The effects were most apparent in the muscles responsible for the pinch force, the forearm muscles. Activation of these muscles was higher at higher force levels. In the trapezius muscle at the dominant side EMG amplitudes were lower at the high pinch force compared to the low force and median force conditions.  相似文献   

13.
This study investigated variations in electromyographic (EMG) responses of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis (VM) due to foot position during leg extension. Twenty-four men and women (23.67 +/= 4.02 years) performed 8 repetitions at 70% of 8 repetition maximum with their leg medially rotated, laterally rotated, and neutral. Repeated-measures analyses of variance indicated that the highest normalized root mean square (NrmsEMG) for the VM and VL occurred with medial rotation, and the highest NrmsEMG for the RF occurred with lateral rotation. Significant NrmsEMG increases and median power frequency decreases occurred across repetitions regardless of foot position. Therefore, medial rotation produced the greatest muscle activation for the VL and VM, whereas lateral rotation produced the greatest activation in the RF. These findings are applicable to athletes or bodybuilders who are seeking to selectively increase either the size or performance of a specific muscle of the quadriceps group.  相似文献   

14.

Introduction  

A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA.  相似文献   

15.
Telomerase is a ribonucleoprotein that adds 5'-d(TTAGGG)-3' hexameric repeats onto the 3' ends of chromosomes. High telomerase activity has been associated with immortal cells, transformed cells, mitogenic stimulation, and proliferative diseases. It is not clear what phenotype would be observed by transient inhibition of telomerase. Studies were designed to inhibit telomerase activity using a series of S-ODN telomere sequence motifs. The studies evaluated the length, hydrogen bonding, and sequence requirements of telomerase inhibition using the TRAP assay and a bioassay measuring cell viability following exposure to the compounds. In addition, we have also studied the role of the 3' end and secondary structure of telomere mimics on telomerase inhibition. Observations reveal that sensitivity to the S-ODNs may not require hybridization to an antisense target but required guanine nucleotides on the 3' end for cells in culture and telomerase inhibition in vitro. The importance of H bonding and the requirement for a free 3' end for the activity of these compounds has also been demonstrated. However, transient inhibition of telomerase is not cytotoxic to all immortal cells and is not sufficient to explain the mechanism of cytotoxicity of these short oligonucleotides.  相似文献   

16.
The fecal floras of polyp patients, Japanese-Hawaiians, North American Caucasians, rural native Japanese, and rural native Africans were compared. The polyp patients and Japanese-Hawaiians were considered to be groups at high risk of colon cancer, and the rural native Japanese and rural native Africans were considered to be groups at low risk. The North American Caucasians were found to have a flora composition intermediate between these two groups. Fifteen bacterial taxa from the human fecal flora were significantly associated with high risk of colon cancer, and five were significantly associated with low risk of colon cancer. Total concentrations of Bacteroides species and, surprisingly, Bifidobacterium species were generally positively associated with increased risk of colon cancer. Some Lactobacillus species and Eubacterium aerofaciens, which also produces major amounts of lactic acid, showed closest associations with low risk of colon cancer.  相似文献   

17.
N(omega)-Propyl-L-arginine (NPA) is reported to be a highly selective inhibitor of neuronal nitric oxide synthase (nNOS). This in vivo study observed its role in ischemia/reperfusion (I/R) injury in rat skeletal muscle. Our results showed that NPA infusion significantly increased vessel diameters and blood flow in reperfused cremaster muscle, and slightly increased contractile function in reperfused extensor digitorum longus (EDL) muscle. In addition, NPA treatment slightly increased I/R-mediated downregulation of nNOS and eNOS mRNA and protein levels. Although NPA showed a beneficial role in I/R injury, our in vivo data do not support NPA as a selective nNOS inhibitor. Also, our data do not provide any insight into the mechanism of NPA. Thus, the in vivo mechanism of action of NPA needs to be further identified, and the role of nNOS in skeletal muscle I/R still remains to be determined.  相似文献   

18.
To elucidate the potential limitations on maximal human quadriceps O2 capacity, six subjects trained (T) one quadriceps on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). Following 5 wk of training, subjects underwent incremental knee extensor tests under normoxic (inspired O2 fraction = 21%) and hyperoxic (inspired O2 fraction = 60%) conditions with the T and UT quadriceps. Training increased quadriceps muscle mass (2.9 +/- 0.2 to 3.1 +/- 0.2 kg), but did not change fiber-type composition or capillary density. The T quadriceps performed at a greater peak power output than UT, under both normoxia (101 +/- 10 vs. 80 +/- 7 W; P < 0.05) and hyperoxia (97 +/- 11 vs. 81 +/- 7 W; P < 0.05) without further increases with hyperoxia. Similarly, thigh peak O2 consumption, blood flow, vascular conductance, and O2 delivery were greater in the T vs. the UT thigh (1.4 +/- 0.2 vs. 1.1 +/- 0.1 l/min, 8.4 +/- 0.8 vs. 7.2 +/- 0.8 l/min, 42 +/- 6 vs. 35 +/- 4 ml x min(-1) x mmHg(-1), 1.71 +/- 0.18 vs. 1.51 +/- 0.15 l/min, respectively) but were not enhanced with hyperoxia. Oxygen extraction was elevated in the T vs. the UT thigh, whereas arteriovenous O2 difference tended to be higher (78 +/- 2 vs. 72 +/- 4%, P < 0.05; 160 +/- 8 vs. 154 +/- 11 ml/l, respectively; P = 0.098) but again were unaltered with hyperoxia. In conclusion, the present results demonstrate that the increase in quadriceps muscle O2 uptake with training is largely associated with increases in blood flow and O2 delivery, with smaller contribution from increases in O2 extraction. Furthermore, the elevation in peak muscle blood flow and vascular conductance with endurance training seems to be related to an enhanced vasodilatory capacity of the vasculature perfusing the quadriceps muscle that is unaltered by moderate hyperoxia.  相似文献   

19.
A protein phosphorylated efficiently in vitro by MAP kinase-activated protein kinase-2 (MAPKAP-K2) was purified from skeletal muscle extracts and identified as the calcium/calmodulin-dependent myosin light chain kinase (MLCK). The phosphorylation site was mapped to Ser(161), a residue shown previously to be autophosphorylated by MLCK. The residue equivalent to Ser(161) became phosphorylated in vivo when rat hindlimbs were stimulated electrically. However, phosphorylation was triggered within seconds, whereas activation of MAPKAP-K2 required several minutes. Moreover, contraction-induced Ser(161) phosphorylation was similar in wild-type or MAPKAP-K2-/- mice. These results indicate that contraction-induced phosphorylation is probably catalyzed by MLCK and not MAPKAP-K2. Ser(161) phosphorylation induced the binding of MLCK to 14-3-3 proteins, but did not detectably affect the kinetic properties of MLCK. The sequence surrounding Ser(161) is unusual in that residue 158 is histidine. Previously, an arginine located three residues N-terminal to the site of phosphorylation was thought to be critical for the specificity of MAPKAP-K2.  相似文献   

20.
Because muscles must be repetitively activated during functional electrical stimulation, it is desirable to identify the stimulation pattern that produces the most force. Previous experimental work has shown that the optimal pattern contains an initial high-frequency burst of pulses (i.e., an initial doublet or triplet) followed by a low, constant-frequency portion. Pattern optimization is particularly challenging, because a muscle's contractile characteristics and, therefore, the optimal pattern change under different physiological conditions and are different for each person. This work describes the continued development and testing of a mathematical model that predicts isometric forces from fresh and fatigued muscles in response to brief trains of electrical pulses. By use of this model and an optimization algorithm, stimulation patterns that produced maximum forces from each subject were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号