首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Contrary to intuitive expectations, overexpression of sarco-endoplasmic reticulum (ER) Ca(2+) ATPases (SERCAs) in Xenopus oocytes leads to a decrease in the period and an increase in the amplitude of intracellular Ca(2+) waves. Here we examine these experimental findings by modeling Ca(2+) release using a modified Othmer-Tang-model. An increase in the period and a reduction in the amplitude of Ca(2+) wave activity are obtained when increases in SERCA density are simulated while keeping all other parameters of the model constant. However, Ca(2+) wave period can be reduced and the wave amplitude and velocity can be significantly increased when an increase in the luminal ER Ca(2+) concentration due to SERCA overexpression is incorporated into the model. Increased luminal Ca(2+) occurs because increased SERCA activity lowers cytosolic Ca(2+), which is partially replenished by Ca(2+) influx across the plasma membrane. These simulations are supported by experimental data demonstrating higher luminal Ca(2+) levels, decreased periods, increased amplitude, and increased velocity of Ca(2+) waves in response to increased SERCA density.  相似文献   

2.
We have studied the responsibility of tissue serotonin reserves in the excito-motor effects induced by DOPA and dopamine on the isolated rat duodenum in vitro in certain experimental conditions. Two groups of experiments have been performed: first the determination of serotonin endogenous stores after administration of repeated high doses of DOPA and dopamine in the organ bath, secondly the evaluation of motor effects of DOPA and dopamine on rat duodenums experimentally depleted of their endogenous serotonin stores. Serotonin levels were lowered after DOPA and the excito-motor effect of this compound was suppressed in serotonin-depleted duodenums. After dopamine, serotonin tissue levels were not significantly lowered, and the excito-motor effect was observed whatever the serotonin stores may be, depleted or not. Our results are consistent with a relationship between the excito-motor effects of DOPA and serotonin release from endogenous stores; but, concerning dopamine, experimental proofs supporting this hypothesis have not been obtained.  相似文献   

3.
Removal of extracellular sodium decreased calcium mobilization from intracellular stores induced by thrombin in aspirin-treated human platelets. ATP and serotonin secretion were also significantly reduced. Secretion was positively correlated with calcium mobilization, but the presence or absence of sodium did not modify the slope of the regression line. Half-maximal secretion was reached when [Ca2+]i was increased by about 0.1 microM. Calcium mobilization induced by the divalent cation ionophore ionomycin was not modified by sodium removal. Secretion induced by ionomycin was much smaller than the thrombin-induced one for the same increases of [Ca2+]i. These results suggest that the presence of external sodium is required for normal thrombin-induced calcium release from the intracellular stores and hence for dense granule secretion. However, secretion cannot be only attributed to the increase of cell [Ca2+]i but also to other process(es) which are not affected by external sodium.  相似文献   

4.
Changes in synaptic responses of identified command neurones of avoidance behaviour to the electric nerve stimulation were investigated in the isolated nervous system of the snail during bath application of serotonin or noradrenaline. Serotonin (10(-5) M) elicited an increase of summary EPSP amplitude in the cells without changes of input resistance and resting potential. Noradrenaline (10(-5) M) application evoked an increase of EPSP amplitude, accompanied by an increase of the input resistance. Mechanisms of serotonin and noradrenaline influence on synaptic responses are discussed.  相似文献   

5.
B Zimmermann  B Walz 《The EMBO journal》1999,18(12):3222-3231
Intercellular Ca2+ signaling in intact salivary glands of the blowfly Calliphora erythrocephala was studied by fluorimetric digital imaging combined with microinjection of putative messenger molecules. Iontophoretic injection of D-myo-inositol 1,4, 5-trisphosphate (InsP3) into salivary gland cells evoked regenerative intercellular Ca2+ waves that spread through the impaled cell and several rows of surrounding cells. Ca2+ increases induced by microinjection of Ca2+ ions were confined to the injected cells and their nearest neighbors. Depletion of intracellular Ca2+ stores by thapsigargin pre-treatment did not alter the time course of the Ca2+ increase caused by Ca2+ injection. However, activation of Ca2+ release became clearly evident when Ca2+ was injected in the presence of serotonin (5-HT). Under these conditions, injection of Ca2+ triggered intercellular Ca2+ waves that consecutively passed through >10 cells. The phospholipase C inhibitor U73122 blocked 5-HT-induced Ca2+ increases but did not affect InsP3-dependent Ca2+ spiking and intercellular Ca2+ wave propagation. The results demonstrate that propagation of agonist-evoked Ca2+ waves in the blowfly salivary gland requires supra-basal [InsP3] but does not depend on feedback activation of phospholipase C. We conclude that the intra- and intercellular transmission of these Ca2+ waves is mediated by diffusion of Ca2+ and Ca2+-induced Ca2+ release via the InsP3 receptor channel.  相似文献   

6.
The mechanisms of cAMP action on the contractility of the isolated heart were studied in the snail Helix pomatia. Serotonin is a powerful activator of heart contractility in this animal. Preincubation of the isolated heart ventricle with the activator of protein kinase A (PKA) Sp-8-bromoadenosine-3′,5′-cyclic monophosphothioate (200 μM) or the activator of Epac proteins 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (100 μM) proved to enhance the amplitude of contractions induced by serotonin. Two types of changes in the contractile response were observed: each agent caused either a uniform increase in the amplitude of heart contractions at all concentrations of serotonin or an abrupt increase in the response to the first minimum dose of serotonin. These results indicate that Epac proteins along with PKA are involved in the transmission of cAMP effect on heart contractility.  相似文献   

7.
We have studied calcium signals and their role in the migration of neuronal and nonneuronal cells of embryonic chick ciliary ganglion (CG). In vitro, neurons migrate in association with nonneuronal cells to form cellular aggregates. Changes in the modulus of the velocity of the neuron-nonneuronal cell complex were observed in response to treatments that increased or decreased intracellular calcium concentration. In addition, both cell types generated spontaneous calcium activity that was abolished by removal of extracellular calcium. Calcium signals in neurons could be characterized as either spikes or waves. Neuronal spikes were found to be related to action potential generation whereas neuronal waves were due to voltage-independent calcium influx. Nonneuronal cells generated calcium oscillations that were dependent on calcium release from intracellular stores and on voltage-independent calcium influx. Application of thimerosal, a compound that stimulates calcium mobilization from internal stores, increased: (1) the amplitude of spontaneous nonneuronal oscillations; (2) the area of migrating nonneuronal cells; and (3) the velocity of the neuronal-nonneuronal cell complex. We conclude that CG cell migration is a calcium dependent process and that nonneuronal cell calcium oscillations play a key role in the modulation of velocity.  相似文献   

8.
We studied the involvement of the endoplasmic reticulum (ER) in calcium signaling in rat chromaffin cells. For this purpose, the following agents influencing the activity of the ER were used: (i) Caffeine that activates the release of Ca2+ from the endoplasmic store and (ii) thapsigargin that suppresses accumulation of calcium in the ER. The intracellular Ca2+ concentration was measured with the help of a calcium-sensitive dye, Fura-2AM, using the microfluorescent technique. Applications of caffeine led to a rise in the level of free Ca2+ in the cell cytosol and also to a decrease in the amplitude of calcium transients induced by depolarization of the plasma membrane under the action of a hyperpotassium solution. Under conditions of repeated caffeine applications, the amplitude of transients decreased to 9% of its initial value, which is explained by exhaustion of the calcium stores. The action of caffeine was restored when the calcium stores were re-filled under the action of depolarization of the plasma membrane. Thapsigargin completely removed the effect of caffeine and did not influence KCl-induced transients. Therefore, our experiments are indicative of a significant importance of the ER calcium stores for calcium signaling in chromaffin cells, which allows us to hypothesize that these stores play an important role in the control of secretion of catecholamines.  相似文献   

9.
Changes in storage packet size for serotonin have been measured in human platelets exposed invitro to exogenous serotonin. When incubated with 10?6M labelled serotonin, a typical platelet can increase its endogenous vesicular dense body stores by more than 50% without any change in the total number of dense bodies per platelet.  相似文献   

10.
The contractions of the dorsal longitudinal muscle of the mollusc Lymnaea stagnalis L., which are evoked by electric stimulation of n. cervicalis inferior were studied. It has been shown that an increase of magnesium ion concentration in saline to 10–15 mM decreases reversibly amplitude of the evoked contractions. Application of serotonin produced a dual effect: at concentrations of 2 × 10–5–10–6 M, it enhanced muscle contractions, whereas at concentrations above 10-5 M, on the contrary, decreased them. The inhibitory effect of the serotonin antagonist mianserin on the evoked contraction amplitude increased with elevation of its concentrations in the studied range (from 10–5 to 10–3 M). The enhancing effect of serotonin on muscle contractions was blocked either by previous mianserin application or its application on the background of the already acting serotonin. A participation of serotoninergic mechanisms in the control of the contractile function of the studied muscle is suggested.  相似文献   

11.
The neurons of the dorsal surface of snail Helix subesophageal ganglia respond similarly to the application of serotonin and the intracellular cAMP injection. These responses represent membrane depolarization. They increase in amplitude with membrane hyperpolarization and have a reverse potential between +10 and -30 mV. Presumably, these responses are associated with increased conductance for several ions. The values of the reverse potentials of serotonin and cAMP responses coincide in 7 out of 17 cells. Phosphodiesterase inhibitor theophylline caused a reversible increase in the amplitude and duration of both serotonin and cAMP responses and, used at a concentration of 1 mM, simulated them. The results obtained meet 2 out of 4 criteria demonstrating that cyclic nucleotides mediate a neurotransmitter response. It is suggested that cAMP may act as a second messenger in excitatory serotonin responses of snail Helix neurons.  相似文献   

12.
An increase in cytosolic Ca2+ often begins as a Ca2+ wave, and this wave is thought to result from sequential activation of Ca(2+)-sensitive Ca2+ stores across the cell. We tested that hypothesis in pancreatic acinar cells, and since Ca2+ waves may regulate acinar Cl- secretion, we examined whether such waves also are important for amylase secretion. Ca2+ wave speed and direction was determined in individual cells within rat pancreatic acini using confocal line scanning microscopy. Both acetylcholine (ACh) and cholecystokinin-8 induced rapid Ca2+ waves which usually travelled in an apical-to-basal direction. Both caffeine and ryanodine, at concentrations that inhibit Ca(2+)-induced Ca2+ release (CICR), markedly slowed the speed of these waves. Amylase secretion was increased over 3-fold in response to ACh stimulation, and this increase was preserved in the presence of ryanodine. These results indicate that 1) stimulation of either muscarinic or cholecystokinin-8 receptors induces apical-to-basal Ca2+ waves in pancreatic acinar cells, 2) the speed of such waves is dependent upon mobilization of caffeine- and ryanodine-sensitive Ca2+ stores, and 3) ACh-induced amylase secretion is not inhibited by ryanodine. These observations provide direct evidence that Ca(2+)-induced Ca2+ release is important for propagation of cytosolic Ca2+ waves in pancreatic acinar cells.  相似文献   

13.
1. Heterosynaptic facilitation (modification of synaptic transmission by a neuron influencing the terminals of the presynaptic neuron) was studied in the pleural ganglion of Aplysia. Among several identified synapses, heterosynaptic facilitation was observed only in one type (EIPSP synapses) when repetitive stimulation was applied to the tentacular nerve or to a particular identified neuron. 2. Serotonin was shown to increase the amplitude of the EIPSP at this synapse; this facilitatory effect was prolonged in the presence of theophylline and mimicked by cyclic AMP. 3. When transmission was abolished by calcium-free solution, calcium injected in the region of the synapse caused partial recovery of the EIPSP; when calcium injection was preceded by serotonin injection near the same terminal, the EIPSP was much larger than with calcium injection alone. 4. It was concluded that the activation of one neuron (the heterosynaptic neuron) caused it to release serotonin, which activated an adenylate cyclase in the pre-synaptic terminals of another neuron. Consequent accumulation of cyclic AMP in these terminals is supposed to have increased their voltage-dependent calcium conductance and hence the amount of transmitter released during an action potential.  相似文献   

14.
Geoffrey Coast 《Peptides》2011,32(3):500-508
Serotonin stimulates secretion by Malpighian tubules (MT) of a number of insects, and functions as a diuretic hormone in Rhodnius prolixus and in larval Aedes aegypti. Serotonin is here shown to be a potent stimulant of secretion by MT of the house cricket, Acheta domesticus, with an apparent EC50 of 9.4 nmol L−1, although its diuretic activity is just 25% of the maximum achievable with either the native CRF-related peptide, Achdo-DH, or a crude extract of the corpora cardiaca. In this respect, the diuretic activity of serotonin is similar to that of the cricket kinin Achdo-KI, and when tested together their actions are not additive, which suggests they target the same transport process. Consistent with this suggestion, the activity of serotonin is chloride-dependent and is associated with a non-selective stimulation of NaCl and KCl transport. In common with Achdo-KI, serotonin has no effect on cAMP production by isolated MT, and both act synergistically with exogenous 8bromo-cAMP in stimulating fluid secretion, most likely by promoting the release of Ca2+ from intracellular stores. A number of serotonin agonists and antagonists were tested to determine the pharmacological profile of receptors on cricket MT. The results are consistent with the diuretic activity of serotonin being mediated through a 5-HT2-like receptor.  相似文献   

15.
Ovsepyan  S. V.  Vesselkin  N. P. 《Neurophysiology》2001,33(6):356-364
We studied, on isolated preparations of the frog spinal cord, the effects of serotonin in different concentrations on the amplitude-temporal parameters of action potentials (AP) in primary afferent fibers, on the potentials reflecting depolarization of primary afferents (DPA), and on the properties of the membrane of these fibers. It was demonstrated that in a part of the dorsal root afferent fibers serotonin caused a drop in the AP amplitude (by 15-20%) and an increase in the AP duration (by 8-13%). Serotonin also significantly (by 70-90%) decreased the amplitude of DPA induced by stimulation of a neighboring dorsal root and noticeably reduced the input membrane resistance of afferent fibers. Serotonin-induced modulation of the AP parameters in the afferents and suppression of DPA under the influence of this amine are postulated as possible factors involved in the central control of afferentation.  相似文献   

16.
In an analysis of the postsynaptic mechanism of heterosynaptic facilitation, changes in the amplitude of the excitatory postsynaptic current (EPSC) and the current evoked by application of acetylcholine (ACh current), acting on the adenylate cyclase system of the LC-1 and RC-1 neurons of the molluskPlanorbis corneus, were compared. Both responses are n-cholinergic and depend on the membrane conductivity for Na+ and K+. Application of serotonin led to a 100–300% increase in the amplitude of the EPSC and (in most cases) the ACh current. However, in 30% of the cases, the increase in the EPSC was accompanied by a decrease in the ACh current. This is probably due to the different contributions of Na+ and K+ to the mechanism of activation of the conductivity of th channel-receptor complex of the nonsynaptic cell membrane. The influence of serotonin on the EPSC and ACh current was simulated by the action of phosphodiesterase blockers and adenylate cyclase activators. Phosphodiesterase activators and protein kinase blockers reversibly inhibited the EPSC and ACh current. Thus, activation of the adenylate cyclase system, mediated by the action of serotonin, promotes the development of a postsynaptic mechanism of formation of heterosynaptic facilitation of the EPSC in the command neurons of the mollusk.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 676–683, November–December, 1991.  相似文献   

17.
18.
A brief high-frequency stimulation of the anal nerve of the isolated nerve ring of snail Helix induced a pronounced increase in the amplitude of EPSPs, evoked in identified neurons of left parietal and visceral ganglions by low frequency (once in 5 min) stimulation of the same nerve. The amplitude of EPSP returned to the control level 30-120 min after tetanization. We called this effect long-term potentiation. A brief application of serotonin (10 microM) in the majority of neurons also induced lasting either 15-30 min or more than 2 hours facilitation of EPSP, evoked by anal nerve stimulation. Intracellular cAMP injections, being without effect on EPSP amplitude in many neurons, in certain neurons caused an increase in EPSP amplitude, lasting up to 30 min. It is suggested that the 3 factors shown to increase synaptic efficiency in molluscan neurons may have common mechanisms of action.  相似文献   

19.
Abstract: Modes of Ca2+ activation by bradykinin, serotonin, and ATP and the possible receptor cross-talk were investigated in mouse neuroblastoma × rat glioma hybrid cells (108CC15) by monitoring fura-2 fluorescence in single cells. A transient rise of cytosolic Ca2+ activity was induced by short pulses of the hormones. Brief exposure of cells to ionomycin, which depletes intracellular Ca2+ stores, reduced the size of subsequent responses to bradykinin or ATP, but not to serotonin. Superfusion of the cells with Ca2+-free medium abolished the Ca2+ response to serotonin, whereas the responses to bradykinin and to ATP were only slightly reduced. This indicates that ATP, like bradykinin, Induces the release of Ca2+ from intracellular stores. Serotonin, in contrast, activates Ca2+ entry from the extracellular space. To investigate whether ATP releases Ca2+ from the same stores as bradykinin, we examined the interaction of the hormones by applying them consecutively. When ATP was applied after bradykinin, the nucleotide did not evoke any response, irrespective of the presence or absence of extracellular Ca2+. The application of ATP before that of bradykinin reduced the size of a following bradykinin-induced Ca2+ response in Ca2+-free medium, but not in Ca2+-containing medium. This suggests that bradykinin may interact with the ATP-activated mechanism by cross-desensitization. Possibly, bradykinin receptors are coupled to additional Ca2+ stores not accessible to ATP that are refilled by extracellular Ca2+. Cyclic AMP and cyclic GMP apparently do not affect the Ca2+ responses to bradykinin and serotonin, as shown by the lack of influence of preincubation of the cells with forskolin or sodium nitroprusside.  相似文献   

20.
The polarized morphology of radial glia allows them to functionally interconnect different layers of CNS tissues including the retina, cerebellum, and cortex. A likely mechanism involves propagation of transcellular Ca2+ waves which were proposed to involve purinergic signaling. Because it is not known whether ATP release is required for astroglial Ca2+ wave propagation we investigated this in mouse Müller cells, radial astroglia-like retinal cells in which in which waves can be induced and supported by Orai/TRPC1 (transient receptor potential isoform 1) channels. We found that depletion of endoplasmic reticulum (ER) stores triggers regenerative propagation of transcellular Ca2+ waves that is independent of ATP release and activation of P2X and P2Y receptors. Both the amplitude and kinetics of transcellular, depletion-induced waves were resistant to non-selective purinergic P2 antagonists such as pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS). Thus, store-operated calcium entry (SOCE) is itself sufficient for the initiation and subcellular propagation of calcium waves in radial glia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号