共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the antigenic structure of herpes simplex virus type 1 glycoprotein C through DNA sequence analysis of monoclonal antibody-resistant mutants.
下载免费PDF全文

Earlier studies of a group of monoclonal antibody-resistant (mar) mutants of herpes simplex virus type 1 glycoprotein C (gC) operationally defined two distinct antigenic sites on this molecule, each consisting of numerous overlapping epitopes. In this report, we further define epitopes of gC by sequence analysis of the mar mutant gC genes. In 18 mar mutants studied, the mar phenotype was associated with a single nucleotide substitution and a single predicted amino acid change. The mutations were localized to two regions within the coding sequence of the external domain of gC and correlated with the two previously defined antigenic sites. The predicted amino acid substitutions of site I mutants resided between residues Gln-307 and Pro-373, whereas those of site II mutants occurred between amino acids Arg-129 and Glu-247. Of the 12 site II mutations, 9 induced amino acid substitutions within an arginine-rich segment of 8 amino acids extending from residues 143 to 151. The clustering of the majority of substituted residues suggests that they contribute to the structure of the affected sites. Moreover, the patterns of substitutions which affected recognition by antibodies with similar epitope specificities provided evidence that epitope structures are physically linked and overlap within antigenic sites. Of the nine epitopes defined on the basis of mutations, three were located within site I and six were located within site II. Substituted residues affecting the site I epitopes did not overlap substituted residues of site II, supporting our earlier conclusion that sites I and II reside in spatially distinct antigenic domains. A computer analysis of the distribution of charged residues and the predicted secondary structural features of wild-type gC revealed that the two antigenic sites reside within the most hydrophilic regions of the molecule and that the antigenic residues are likely to be organized as beta sheets which loop out from the surface of the molecule. Together, these data and our previous studies support the conclusion that the mar mutations identified by sequence analysis very likely occur within or near the epitope structures themselves. Thus, two highly antigenic regions of gC have now been physically and genetically mapped to well-defined domains of the protein molecule. 相似文献
2.
Extensive homology between the herpes simplex virus type 2 glycoprotein F gene and the herpes simplex virus type 1 glycoprotein C gene. 总被引:3,自引:11,他引:3
下载免费PDF全文

The region of the herpes simplex virus type 2 (HSV-2) genome which maps colinearly with the HSV-1 glycoprotein C (gC) gene has been cloned, and the DNA sequence of a 2.29-kilobase region has been determined. Contained within this sequence is a major open reading frame of 479 amino acids. The carboxyterminal three-fourths of the derived HSV-2 protein sequence showed a high degree of sequence homology to the HSV-1 gC amino acid sequence reported by Frink et al. (J. Virol. 45:634-647, 1983). The amino-terminal region of the HSV-2 sequence, however, showed very little sequence homology to HSV-1 gC. In addition, the HSV-1 gC sequence contained 27 amino acids in the amino-terminal region which were missing from the HSV-2 protein. Computer-assisted analysis of the hydrophilic and hydrophobic properties of the derived HSV-2 sequence demonstrated that the protein contained structures characteristic of membrane-bound glycoproteins, including an amino-terminal signal sequence and carboxy-terminal hydrophobic transmembrane domain and charged cytoplasmic anchor. The HSV-2 protein sequence also contained seven putative N-linked glycosylation sites. These data, in conjunction with mapping studies of Para et al. (J. Virol. 45:1223-1227, 1983) and Zezulak and Spear (J. Virol. 49:741-747, 1984), suggest that the protein sequence derived from the HSV-2 genome corresponds to gF, the HSV-2 homolog of HSV-1 gC. 相似文献
3.
Antigenic analysis of a major neutralization site of herpes simplex virus glycoprotein D, using deletion mutants and monoclonal antibody-resistant mutants. 总被引:1,自引:14,他引:1
下载免费PDF全文

M I Muggeridge V J Isola R A Byrn T J Tucker A C Minson J C Glorioso G H Cohen R J Eisenberg 《Journal of virology》1988,62(9):3274-3280
Herpes simplex virus glycoprotein D is a component of the virion envelope and appears to be involved in attachment, penetration, and cell fusion. Monoclonal antibodies against this protein can be arranged in groups on the basis of a number of biological and biochemical properties. Group I antibodies are type common, have high complement-independent neutralization titers, and recognize discontinuous (conformational) epitopes; they are currently being used in several laboratories to study the functions of glycoprotein D. We have used a panel of neutralization-resistant mutants to examine the relationships between these antibodies in detail. We found that they can be divided into two subgroups, Ia and Ib, such that mutations selected with Ia antibodies have little or no effect on binding and neutralization by Ib antibodies and vice versa. In addition, Ia antibodies are able to bind deletion and truncation mutants of glycoprotein D that Ib antibodies do not recognize, suggesting that their epitopes are physically distinct. However, with one exception, Ia and Ib antibodies block each other strongly in binding assays with purified glycoprotein D, whereas antibodies from other groups have no effect. We have therefore defined the sum of the Ia and Ib epitopes as antigenic site 1. 相似文献
4.
Nucleotide sequence of the DNA polymerase gene of herpes simplex virus type 1 strain Angelotti. 总被引:6,自引:2,他引:6
下载免费PDF全文

C W Knopf 《Nucleic acids research》1986,14(20):8225-8226
5.
Amino-terminal sequence, synthesis, and membrane insertion of glycoprotein B of herpes simplex virus type 1. 总被引:1,自引:8,他引:1
下载免费PDF全文

Glycoprotein B (gB) was purified from cells infected with two strains (KOS and F) of herpes simplex virus type 1. Determination of amino acid sequence at the NH2 termini revealed, by comparison with amino acid sequence deduced from previously published nucleotide sequence, that gB is made with a cleavable signal sequence of 29 or 30 amino acids, depending on the virus strain. Analysis of gB translated in vitro in the presence and absence of membranes showed that gB is inserted into membranes and glycosylated cotranslationally; a large portion of the gB polypeptide made in vitro is protected from proteolysis by membranes; the large protected fragment carries N-linked carbohydrate and is probably the NH2 terminus based on locations of signals for the addition of N-linked carbohydrate; and the size of the protected fragment is 93 kilodaltons (kDa) for gB made in vitro and associated with dog pancreas membranes, whereas both 93- and 98-kDa protected fragments can be detected for gB made in vivo. These last results are consistent with a previous proposal that gB may traverse the membrane three times. 相似文献
6.
7.
Expression of herpes simplex virus type 1 glycoprotein D deletion mutants in mammalian cells. 总被引:6,自引:15,他引:6
下载免费PDF全文

G H Cohen W C Wilcox D L Sodora D Long J Z Levin R J Eisenberg 《Journal of virology》1988,62(6):1932-1940
Glycoprotein D (gD) is a viron envelope component of herpes simplex virus types 1 and 2. We have previously defined seven monoclonal antibody (MAb) groups which recognize distinct epitopes on the mature gD-1 protein of 369 amino acids. MAb groups VII, II, and V recognize continuous epitopes at residues 11-19, 272-279, and 340-356, respectively. MAb groups I, III, IV, and VI recognize discontinuous epitopes. Recent studies have focused on epitopes I, III, and VI. Using truncated forms of gD generated by recombinant DNA methods and proteolysis, epitopes III, IV, and VI were located within amino acids 1-233. A portion of discontinuous epitope I was located in a region within residues 233-275. For this study, we used recombinant DNA methods to create mutations in the gD-1 gene and studied the effects of those mutations on gD as expressed in mammalian cells. Plasmid pRE4, containing the coding sequence of gD-1 and the Rous sarcoma virus long terminal repeat promoter, was transfected into mammalian cells. The expressed protein, gD-1-(pRE4), was identical in size and antigenic properties to gD-1 from infected cells. Six in-frame deletion mutations were subsequently constructed by using restriction enzymes to excise portions of the gD-1 gene. Plasmids carrying these mutated forms were transfected into cells, and the corresponding proteins were examined at 48 h posttransfection for antigenicity and glycosylation patterns. Three deletions of varying size were located downstream of residue 233. Analysis of these mutants showed that amino acids within the region 234-244 were critical for binding of DL11 (group I), but not for other MAb groups. Three other deletion mutants lost all ability to bind MAbs which recognize discontinuous epitopes. In addition, much of the gD expressed by these mutants was observed to migrate as high-molecular-weight aggregated forms in nondenaturing gels. Each of these mutations involved the loss of a cysteine residue, suggesting that disulfide linkages play an essential role in the formation of discontinuous epitopes. The extent of glycosylation of the mutant gD molecules accumulated at 48 h posttransfection suggested altered carbohydrate processing. In one case, there was evidence for increased O-linked glycosylation. Those proteins which had lost a cysteine residue as part of the deletion did not accumulate molecules processed beyond the high-mannose stage. The results suggest that carbohydrate processing during synthesis of gD is very sensitive to alterations in structure, particularly changes involving cysteine residues. 相似文献
8.
Passive immune protection by herpes simplex virus-specific monoclonal antibodies and monoclonal antibody-resistant mutants altered in pathogenicity. 总被引:3,自引:11,他引:3
下载免费PDF全文

Virus-neutralizing monoclonal antibodies specific for 13 different genetically defined epitopes of glycoproteins gC, gB, and gD of herpes simplex virus type 1, strain KOS-321, were compared for their ability to provide passive immunity to DBA-2 mice challenged intracranially. Protection was highly specific, since individual monoclonal antibodies failed to protect against infection with monoclonal antibody-resistant (mar) mutants altered in the single epitope recognized by the injected antibody. The dose-response kinetics of passive immunity paralleled the in vitro neutralization titers for each antibody. No correlation was observed between immune protection and antibody isotype or complement-dependent in vitro neutralization titers. This suggests that virus neutralization was not the protective mechanism. In general, antibodies reactive with epitopes of gC were protective at the lowest antibody doses, antibodies specific for gB were less efficient in providing immunity, and antibodies against gD were the least effective. mar mutants with single epitope changes in gC and multiple epitope changes in gB showed highly reduced pathogenicity, requiring up to 5 X 10(6) PFU to kill 50% of infected animals. These findings indicated that antigenic variation affects virus growth and spread in the central nervous system. Thus, mutations which affect antigenic structure also can alter virus pathogenicity. The alteration of these epitopes does not, however, appreciably reduce the development of resistance to infection. Infection of mice with these mutants or inoculation of mice with UV-inactivated, mutant-infected cells before challenge rendered the animals resistant to infection with wild-type herpes simplex virus type 1. 相似文献
9.
Molecular basis of the glycoprotein C-negative phenotypes of herpes simplex virus type 1 mutants selected with a virus-neutralizing monoclonal antibody. 总被引:2,自引:10,他引:2
下载免费PDF全文

Previously (Holland et al., J. Virol. 52:566-574, 1984; Kikuchi et al., J. Virol. 52:806-815, 1984) we described the isolation and partial characterization of over 100 herpes simplex virus type 1 mutants which were resistant to neutralization by a pool of glycoprotein C- (gC) specific monoclonal antibodies. The genetic basis for the inability of several of these gC- mutants to express an immunoreactive envelope form of gC is reported here. Comparative nucleotide sequence analysis of the gC gene of the six mutants gC-3, gC-8, gC-49, gC-53, gC-85, and synLD70, which secrete truncated gC polypeptides, with that of the wild-type KOS 321 gC gene revealed that these mutant phenotypes were caused by frameshift or nonsense mutations, resulting in premature termination of gC translation. Secretion of the gC polypeptide from cells infected with these mutants was due to the lack of a functional transmembrane anchor sequence. The six secretor mutants were tested for suppression of amber mutations in mixed infection with a simian virus 40 amber suppressor vector. Mutant gC-85 was suppressed and produced a wild-type-sized membrane-bound gC. Nucleotide sequence analysis of the six gC deletion mutants gC-5, gC-13, gC-21, gC-39, gC-46, and gC-98 revealed that they carried identical deletions which removed 1,702 base pairs of the gC gene. The deletion, which was internal to the gC gene, removed the entire gC coding sequence and accounted for the novel 1.1-kilobase mRNA previously seen in infections with these mutants. The mutant gC-44 was previously shown to produce a membrane-bound gC protein indistinguishable in molecular weight from wild-type gC. This mutant differed from wild-type virus in that it had reduced reactivity with virus-neutralizing monoclonal antibodies. Nucleotide sequence analysis of the gC gene of mutant gC-44 demonstrated a point mutation which changed amino acid 329 of gC from a serine to a phenylalanine. 相似文献
10.
The nucleotide sequence of the herpes simplex virus type 1 late gene ICP18.5 of strain Angelotti. 总被引:2,自引:1,他引:2
下载免费PDF全文

C W Knopf 《Nucleic acids research》1987,15(19):8109-8110
11.
Characterization of a herpes simplex virus type 2 75,000-molecular-weight glycoprotein antigenically related to herpes simplex virus type 1 glycoprotein C. 总被引:5,自引:17,他引:5
下载免费PDF全文

Evidence is presented that the herpes simplex virus type 2 glycoprotein previously designated gF is antigenically related to herpes simplex virus type 1 gC (gC-1). An antiserum prepared against type 1 virion envelope proteins immunoprecipitated gF of type 2 (gF-2), and competition experiments revealed that the anti-gC-1 component of the antiserum was responsible for the anti-gF-2 cross-reactivity. An antiserum prepared against fully denatured purified gF-2, however, and three anti-gF-2 monoclonal antibodies failed to precipitate any type 1 antigen, indicating that the extent of cross-reactivity between gC-1 and gF-2 may be limited. Several aspects of gF-2 synthesis and processing were investigated. Use of the enzymes endo-beta-N-acetylglucosaminidase H and alpha-D-N-acetylgalactosaminyl oligosaccharidase revealed that the fully processed form of gF-2 (about 75,000 [75K] apparent molecular weight) had both complex-type N-linked and O-linked oligosaccharides, whereas newly synthesized forms (67K and 69K) had only high-mannose N-linked oligosaccharides. These last two forms were both reduced in size to 54K by treatment with endo-beta-N-acetylglucosaminidase H and therefore appear to differ only in the number of N-linked chains. Neutralization tests and radioiodination experiments revealed that gF-2 is exposed on the surfaces of virions and that the 75K form of gF-2 is exposed on cell surfaces. The similarities and differences of gF-2 and gC-1 are discussed in light of recent mapping results which suggest collinearity of their respective genes. 相似文献
12.
Glycoprotein B (gB) specified by herpes simplex virus can be extracted from virions or infected cells in the form of detergent-stable, heat-dissociable oligomers. The composition of the oligomers and requirements for their formation were investigated. Evidence is presented that the faster-migrating forms of the oligomers are homodimers of gB. Dimerization was shown to occur within minutes of polypeptide synthesis and did not depend on glycosylation, the expression of other viral proteins, or virion morphogenesis. The multiple, electrophoretically distinct forms of gB dimers differ in extent or rate of N-linked oligosaccharide processing and also have other differences that influence electrophoretic mobility. 相似文献
13.
Genome sequence of herpes simplex virus 1 strain KOS 总被引:2,自引:0,他引:2
Herpes simplex virus type 1 (HSV-1) strain KOS has been extensively used in many studies to examine HSV-1 replication, gene expression, and pathogenesis. Notably, strain KOS is known to be less pathogenic than the first sequenced genome of HSV-1, strain 17. To understand the genotypic differences between KOS and other phenotypically distinct strains of HSV-1, we sequenced the viral genome of strain KOS. When comparing strain KOS to strain 17, there are at least 1,024 small nucleotide polymorphisms (SNPs) and 172 insertions/deletions (indels). The polymorphisms observed in the KOS genome will likely provide insights into the genes, their protein products, and the cis elements that regulate the biology of this HSV-1 strain. 相似文献
14.
15.
Structure and expression of the herpes simplex virus type 2 glycoprotein gB gene. 总被引:4,自引:17,他引:4
下载免费PDF全文

L L Stuve S Brown-Shimer C Pachl R Najarian D Dina R L Burke 《Journal of virology》1987,61(2):326-335
The gene for glycoprotein gB2 of herpes simplex virus type 2 strain 333 was cloned, sequenced, and expressed in mammalian cells. The gB2 protein had an overall nucleotide and amino acid sequence homology of 86% with the cognate gB1 protein. However, of the 125 amino acid substitutions or deletions, only 12.5% were conservative replacements. These differences were clustered within an NH2-terminal region, a central region, and a COOH-terminal region, resulting in domains of near identity broken by small regions of marked divergence. Regions of greatest homology included a 90-amino-acid stretch starting at residue 484 and 39 amino acids spanning residues 835 to 873, which cover a rate-of-entry locus mapped to Ala-552 and a syn locus mapped to Arg-857, respectively, in gB1 by Bzik et al. (D. J. Bzik, B. A. Fox, N. A. DeLuca, and S. Person, Virology 133:301-314, 1984). Pellett et al. (P. E. Pellett, K. G. Kousoulas, L. Pereira, and B. Roizman, J. Virol. 53:243-253, 1985) mapped the mutations in three monoclonal antibody-resistant gB1 mutants between amino acids 273 and 443. These epitopes are included in a region of 98 residues identical between gB1 and gB2. The identity of this protein was verified by placing a truncated gene lacking the 303 carboxyl-terminal amino acids of gB2 into mammalian COS and CHO cells. Expression was demonstrated by immunofluorescence and radioimmunoprecipitation. This protein will be purified from the stable CHO cell lines and compared with gB1 for immunogenicity and protective efficacy in animal challenge models. 相似文献
16.
Identification of dominant-negative mutants of the herpes simplex virus type 1 immediate-early protein ICP0.
下载免费PDF全文

ICP0 is a 110,000-molecular-weight immediate-early protein of herpes simplex virus type 1 (HSV-1) which is encoded by three exons. It has been shown to function as a promiscuous transactivator of a variety of different HSV-1 and non-HSV-1 promoters in transient expression assays. Analysis of mutations which truncated the carboxy-terminal end of this 775-amino-acid (aa) protein demonstrated that a polypeptide which contained only aa 1 to 553 still possessed significant transactivation potential. Additional carboxy-terminal truncations which sequentially removed aa 245 to 553 and thus the remainder of the third exon resulted in the eventual loss of transactivation capability in these mutants. However, further analysis of these truncated derivatives demonstrated that they behaved as dominant-negative mutants to the wild-type polypeptide. Moreover, one of the mutants was found to act as a promiscuous repressor, in that it could dramatically inhibit a variety of HSV-1 promoters, non-HSV-1 promoters, and heterologous transactivator proteins in transient expression assays, despite having lost almost the entire third exon. These results indicate that a domain encoded by the first two exons probably interacts with, and can effectively titrate, the unknown cellular factor(s) through which ICP0 mediates transactivation. 相似文献
17.
Genetic analysis of temperature-sensitive mutants which define the gene for the major herpes simplex virus type 1 DNA-binding protein. 总被引:11,自引:60,他引:11
下载免费PDF全文

We have assigned eight temperature-sensitive mutants of herpes simplex virus type 1 to complementation group 1-1. Members of this group fail to complement mutants in herpes simplex virus type 2 complementation group 2-2. The mutation of one member of group 1-1, tsHA1 of strain mP, has been shown to map in or near the sequence which encodes the major herpes simplex virus type 1 DNA-binding protein (Conley et al., J. Virol. 37:191-206, 1981). The mutations of five other members of group 1-1 map in or near the sequence in which the tsHA1 mutation maps, a sequence which lies near the center of UL between the genes for the viral DNA polymerase and viral glycoprotein gAgB. These mutants can be divided into two groups; the mutations of one group map between coordinates 0.385 and 0.398, and the mutations of the other group map between coordinates 0.398 and 0.413. At the nonpermissive temperature mutants in group 1-1 are viral DNA negative, and mutant-infected cells fail to react with monoclonal antibody to the 130,000-dalton DNA-binding protein. Taken together, these data indicate that mutants in complementation groups 1-1 and 2-2 define the gene for the major herpes simplex virus DNA-binding protein, an early gene product required for viral DNA synthesis. 相似文献
18.
Identification of mar mutations in herpes simplex virus type 1 glycoprotein B which alter antigenic structure and function in virus penetration. 总被引:1,自引:11,他引:1
下载免费PDF全文

S L Highlander D J Dorney P J Gage T C Holland W Cai S Person M Levine J C Glorioso 《Journal of virology》1989,63(2):730-738
Analysis of six monoclonal antibody-resistant (mar) mutants in herpes simplex virus type 1 glycoprotein B identified two type-common (II and III) and two type-specific (I and IV) antigenic sites on this molecule. To derive additional information on the location of these sites, mar mutations were mapped and nucleotide alterations were identified by DNA sequencing. Each mutant carried a single amino acid substitution resulting from a G-to-A base transition. Alterations affecting antibody neutralization were identified at residues 473, 594, 305, and 85 for mutants in sites I through IV, respectively. Two clonally distinct site II antibodies each selected mar mutants (Gly to Arg at residue 594) that exhibited a reduction in the rate of entry (roe) into host cells. A site II mar revertant that regained sensitivity to neutralization by site II antibodies also showed normal entry kinetics. DNA sequencing of this virus identified a single base reversion of the site II mar mutation, resulting in restoration of the wild-type sequence (Arg to Gly). This finding demonstrated that the mar and roe phenotypes were the result of a single mutation. To further define structures that contributed to antibody recognition, monoclonal antibodies specific for all four sites were tested for their ability to immune precipitate a panel of linker-insertion mutant glycoprotein B molecules. Individual polypeptides that contained single insertions of 2 to 28 amino acids throughout the external domain were not recognized or were recognized poorly by antibodies specific for sites II and III, whereas no insertion affected antibody recognition of sites I and IV. mar mutations affecting either site II or III were previously shown to cause temperature-sensitive defects in glycoprotein B glycosylation, and variants altered in both these sites were temperature sensitive for virus production. Taken together, the data indicate that antigenic sites II and III are composed of higher-order structures whose integrity is linked with the ability of glycoprotein B to function in virus infectivity. 相似文献
19.
R J Eisenberg D Long M Ponce de Leon J T Matthews P G Spear M G Gibson L A Lasky P Berman E Golub G H Cohen 《Journal of virology》1985,53(2):634-644
We previously defined eight groups of monoclonal antibodies which react with distinct epitopes of herpes simplex virus glycoprotein D (gD). One of these, group VII antibody, was shown to react with a type-common continuous epitope within residues 11 to 19 of the mature glycoprotein (residues 36 to 44 of the predicted sequence of gD). In the current investigation, we have localized the sites of binding of two additional antibody groups which recognize continuous epitopes of gD. The use of truncated forms of gD as well as computer predictions of secondary structure and hydrophilicity were instrumental in locating these epitopes and choosing synthetic peptides to mimic their reactivity. Group II antibodies, which are type common, react with an epitope within residues 268 to 287 of the mature glycoprotein (residues 293 to 312 of the predicted sequence). Group V antibodies, which are gD-1 specific, react with an epitope within residues 340 to 356 of the mature protein (residues 365 to 381 of the predicted sequence). Four additional groups of monoclonal antibodies appear to react with discontinuous epitopes of gD-1, since the reactivity of these antibodies was lost when the glycoprotein was denatured by reduction and alkylation. Truncated forms of gD were used to localize these four epitopes to the first 260 amino acids of the mature protein. Competition experiments were used to assess the relative positions of binding of various pairs of monoclonal antibodies. In several cases, when one antibody was bound, there was no interference with the binding of an antibody from another group, indicating that the epitopes were distinct. However, in other cases, there was competition, indicating that these epitopes might share some common amino acids. 相似文献
20.
Herpes simplex virus (HSV) has 10 glycoproteins in its envelope. Glycoprotein B (gB), gC, gD, gH, and gL have been implicated in virus entry. We previously used chemical cross-linking to show that these five glycoproteins were close enough to each other to be cross-linked into homodimeric and hetero-oligomeric forms; hetero-oligomers of gB-gC, gC-gD, gD-gB, gH-gL, gC-gL and gD-gL were found in purified virions. To better understand the roles of these glycoproteins in viral entry, we have modified a standard HSV penetration assay to include cross-linkers. This allowed us to examine changes in associations of viral glycoproteins during the entry process. HSV-1(KOS) was adsorbed at 4 degrees C to human neuroblastoma cells (SY5Y). The temperature was raised to 37 degrees C and cells were treated with cross-linker at various times after the temperature shift. Cytoplasmic extracts were examined by Western blotting (immunoblotting) for viral glycoproteins. We found that (i) as in virus alone, the length and concentration of the cross-linking agent affected the number of specific complexes isolated; (ii) the same glycoprotein patterns found in purified virions were also present after attachment of virions to cells; and (iii) the ability to cross-link HSV glycoproteins changed as virus penetration proceeded, e.g., gB and gD complexes which were present during attachment disappeared with increasing time, and their disappearance paralleled the kinetics of penetration. However, this phenomenon appeared to be selective since it was not observed with gC oligomers. In addition, we examined the cross-linking patterns of gB and gD in null viruses K082 and KOSgD beta. Neither of these mutants, which attach but cannot penetrate, showed changes in glycoprotein cross-linking over time. We speculate that these changes are due to conformational changes which preclude cross-linking or spatial alterations which dissociate the glycoprotein interactions during the penetration events. 相似文献