首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mycoplasms are known as pathogens of economic and medical interest in plants, animals and man. Here, we show a positive correlation between the presence of Mycoplasma-like symbionts in their isopod hosts and survivorship on low-quality food. Most isopods that survived feeding on a cellulose-based low-quality diet for 90 days harboured 'Candidatus Hepatoplasma' in their midgut glands, while those that died within 90 days mostly either harboured no or other bacterial symbionts. We detected 'Candidatus Hepatoplasma' in all but one of the examined species of terrestrial isopods from different habitats and locations, suggesting an evolutionarily ancient association between terrestrial isopods and their Mycoplasma-like symbionts. Phylogenetic analyses clustered symbionts from different populations of the same isopod species together, and clearly distinguished between symbionts of different isopod species, indicating host-specificity of 'Candidatus Hepatoplasma', although a previous study provided evidence for environmental symbiont transmission. Nonetheless, horizontal exchange of symbionts between species may have been possible in evolutionary earlier stages, as suggested by only limited congruency of phylogenetic trees of hosts and symbionts. Another symbiont, 'Candidatus Hepatincola porcellionum', was only detected in midgut glands of the most terrestrial tribe of isopods (Crinocheta), suggesting an evolutionarily younger host-symbiont association. This symbiont proved to be negatively correlated with host longevity, even on high-quality food.  相似文献   

2.
Uncultivated bacteria that densely colonize the midgut glands (hepatopancreas) of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda) were identified by cloning and sequencing of their 16S rRNA genes. Phylogenetic analysis revealed that these symbionts represent a novel lineage of the Mollicutes and are only distantly related (<82% sequence identity) to members of the Mycoplasmatales and Entomoplasmatales. Fluorescence in situ hybridization with a specific oligonucleotide probe confirmed that the amplified 16S rRNA gene sequences indeed originated from a homogeneous population of symbionts intimately associated with the epithelial surface of the hepatopancreas. The same probe also detected morphotypically identical symbionts in other crinochete isopods. Scanning and transmission electron microscopy revealed uniform spherical bacterial cells without a cell wall, sometimes interacting with the microvilli of the brush border by means of stalk-like cytoplasmic appendages, which also appeared to be involved in cell division through budding. Based on the isolated phylogenetic position and unique cytological properties, the provisional name "Candidatus Hepatoplasma crinochetorum" is proposed for this new taxon of Mollicutes colonizing the hepatopancreas of P. scaber.  相似文献   

3.
Uncultivated bacteria that densely colonize the midgut glands (hepatopancreas) of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda) were identified by cloning and sequencing of their 16S rRNA genes. Phylogenetic analysis revealed that these symbionts represent a novel lineage of the Mollicutes and are only distantly related (<82% sequence identity) to members of the Mycoplasmatales and Entomoplasmatales. Fluorescence in situ hybridization with a specific oligonucleotide probe confirmed that the amplified 16S rRNA gene sequences indeed originated from a homogeneous population of symbionts intimately associated with the epithelial surface of the hepatopancreas. The same probe also detected morphotypically identical symbionts in other crinochete isopods. Scanning and transmission electron microscopy revealed uniform spherical bacterial cells without a cell wall, sometimes interacting with the microvilli of the brush border by means of stalk-like cytoplasmic appendages, which also appeared to be involved in cell division through budding. Based on the isolated phylogenetic position and unique cytological properties, the provisional name “Candidatus Hepatoplasma crinochetorum” is proposed for this new taxon of Mollicutes colonizing the hepatopancreas of P. scaber.  相似文献   

4.
The marine metazoan fauna first diversified in the early Cambrian, but terrestrial environments were not colonized until at least 100 million years later. Among the groups of organisms that successfully colonized land is the crustacean order Isopoda. Of the 10,000 described isopod species, ~ 3,600 species from the suborder Oniscidea are terrestrial. Although it is widely thought that isopods colonized land only once, some studies have failed to confirm the monophyly of Oniscidea. To infer the evolutionary relationships among isopod lineages, we conducted phylogenetic analyses of nuclear 18S and 28S and mitochondrial COI genes using maximum-likelihood and Bayesian methods. We also analyzed a second data set comprising all of the mitochondrial protein-coding genes from a smaller sample of isopod taxa. Based on our analyses using a relaxed molecular clock, we dated the origin of terrestrial isopods at 289.5 million years ago (95% credibility interval 219.6–358.9 million years ago). These predate the known fossil record of these taxa and coincide with the formation of the supercontinent Pangaea and with the diversification of vascular plants on land. Our results suggest that the terrestrial environment has been colonized more than once by isopods. The monophyly of the suborder Oniscidea was not supported in any of our analyses, conflicting with classical views based on morphology. This draws attention to the need for further work on this group of isopods.  相似文献   

5.
Studies of microbial associations of intertidal isopods in the primitive genus Ligia (Oniscidea, Isopoda) can help our understanding of the formation of symbioses during sea-land transitions, as terrestrial Oniscidean isopods have previously been found to house symbionts in their hepatopancreas. Ligia pallasii and Ligia occidentalis co-occur in the high intertidal zone along the Eastern Pacific with a large zone of range overlap and both species showing patchy distributions. In 16S rRNA clone libraries mycoplasma-like bacteria (Firmicutes), related to symbionts described from terrestrial isopods, were the most common bacteria present in both host species. There was greater overall microbial diversity in Ligia pallasii compared with L. occidentalis. Populations of both Ligia species along an extensive area of the eastern Pacific coastline were screened for the presence of mycoplasma-like symbionts with symbiont-specific primers. Symbionts were present in all host populations from both species but not in all individuals. Phylogenetically, symbionts of intertidal isopods cluster together. Host habitat, in addition to host phylogeny appears to influence the phylogenetic relation of symbionts.  相似文献   

6.
In this study, we evaluated the effect of entomopathogenic nematodes (EPNs) Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora, symbiotically associated with bacteria of the genera Xenorhabdus or Photorhabdus, on the survival of eight terrestrial isopod species. The EPN species S. carpocapsae and H. bacteriophora reduced the survival of six isopod species while S. feltiae reduced survival for two species. Two terrestrial isopod species tested (Armadillidium vulgare and Armadillo officinalis) were found not to be affected by treatment with EPNs while the six other isopod species showed survival reduction with at least one EPN species. By using aposymbiotic S. carpocapsae (i.e. without Xenorhabdus symbionts), we showed that nematodes can be isopod pathogens on their own. Nevertheless, symbiotic nematodes were more pathogenic for isopods than aposymbiotic ones showing that bacteria acted synergistically with their nematodes to kill isopods. By direct injection of entomopathogenic bacteria into isopod hemolymph, we showed that bacteria had a pathogenic effect on terrestrial isopods even if they appeared unable to multiply within isopod hemolymphs. A developmental study of EPNs in isopods showed that two of them (S. carpocapsae and H. bacteriophora) were able to develop while S. feltiae could not. No EPN species were able to produce offspring emerging from isopods. We conclude that EPN and their bacteria can be pathogens for terrestrial isopods but that such hosts represent a reproductive dead-end for them. Thus, terrestrial isopods appear not to be alternative hosts for EPN populations maintained in the absence of insects.  相似文献   

7.
The isopod crustaceans are diverse both morphologically and in described species numbers. Nearly 950 described species (∼9% of all isopods) live in continental waters, and possibly 1,400 species remain undescribed. The high frequency of cryptic species suggests that these figures are underestimates. Several major freshwater taxa have ancient biogeographic patterns dating from the division of the continents into Laurasia (Asellidae, Stenasellidae) and Gondwana (Phreatoicidea, Protojaniridae and Heterias). The suborder Asellota has the most described freshwater species, mostly in the families Asellidae and Stenasellidae. The suborder Phreatoicidea has the largest number of endemic genera. Other primary freshwater taxa have small numbers of described species, although more species are being discovered, especially in the southern hemisphere. The Oniscidea, although primarily terrestrial, has a small number of freshwater species. A diverse group of more derived isopods, the ‘Flabellifera’ sensu lato has regionally important species richness, such as in the Amazon River. These taxa are transitional between marine and freshwater realms and represent multiple colonisations of continental habitats. Most species of freshwater isopods species and many genera are narrow range endemics. This endemism ensures that human demand for fresh water will place these isopods at an increasing risk of extinction, as has already happened in a few documented cases. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

8.
Wolbachia are maternally inherited, intracellular, alpha proteobacteria that infect a wide range of arthropods. They cause three kinds of reproductive alterations in their hosts: cytoplasmic incompatibility, parthenogenesis and feminization. There have been many studies of the distribution of Wolbachia in arthropods, but very few crustacean species are known to be infected. We investigated the prevalence of Wolbachia in 85 species from five crustacean orders. Twenty-two isopod species were found to carry these bacteria. The bacteria were found mainly in terrestrial species, suggesting that Wolbachia came from a continental environment. The evolutionary relationships between these Wolbachia strains were determined by sequencing bacterial genes and by interspecific transfers. All the bacteria associated with isopods belonged to the Wolbachia B group, based on 16S rDNA sequence data. All the terrestrial isopod symbionts in this group except one formed an independent clade. The results of interspecific transfers show evidence of specialization of Wolbachia symbionts to their isopod hosts. They also suggest that host species plays a more important role than bacterial phylogeny in determining the phenotype induced by Wolbachia infection.  相似文献   

9.
Abstract Granivory (seed feeding) evolved in many animal groups. Field observations hint at the existence of granivory in terrestrial isopods (Crustacea: Isopoda: Oniscidea), for which it was previously unknown. In this paper granivory in terrestrial isopods is addressed for the first time, focusing on (i) seed acceptance in the presence of plant litter and (ii) size as a constraint for acceptance and consumption. In a laboratory choice experiment, Armadillidium vulgare consumed seeds of Capsella bursa‐pastoris and Poa annua when plant litter was present. In a no‐choice experiment, seeds of seven plant species were offered to four isopod species giving 13 combinations in total [A. vulgare (seven species of seeds), Oniscus asellus (two), Porcellio scaber (two), and Porcellionides pruinosus (two)]. The tested isopods differed in their acceptance (proportion of individuals consuming seeds) and consumption (both number and amount of seeds eaten) of seed species. Size as a constraint was demonstrated in A. vulgare offered Cirsium arvense seed, since the probability that this large seed was eaten increased with body size of the isopod. In the other 10 seed–isopod pairs, seed consumption increased linearly with isopod body size. Granivory is thus widespread in terrestrial isopods, although the tendency to eat seeds differs between species.  相似文献   

10.
In Tunisia, while wetlands are considered as remarkable habitats for their faunal and floral diversity, few studies on the species diversity of terrestrial isopods were performed. To fill this gap, the spatio‐temporal distribution of Oniscidea at Ghar El Melh lagoon (north‐east of Tunisia) was analysed. Sampling was carried out with 50 × 50 cm quadrats along a perpendicular transect to the shoreline. Nine species of terrestrial isopods belonging to seven genera were identified. Chaetophiloscia elongata Dollfus, 1884 was the most abundant species in all seasons except for summer; its relative abundance ranged from 38.9% to 77% in summer and autumn, respectively. Hill diversity indices ranged from 0.86 to 0.94 and equitability indices from 0.33 and 0.68. The statistical analysis showed a significant difference of isopod species and plant associations among seasons.  相似文献   

11.
The nutritional morphology, physiology and ecology of terrestrial isopods (Isopoda: Oniscidea) is significant in two respects. (1) Most oniscid isopods are truly terrestrial in terms of being totally independent of the aquatic environment. Thus, they have evolved adaptations to terrestrial food sources. (2) In many terrestrial ecosystems, isopods play an important role in decomposition processes through mechanical and chemical breakdown of plant litter and by enhancing microbial activity. While the latter aspect of nutrition is discussed only briefly in this review, I focus on the evolutionary ecology of feeding in terrestrial isopods. Due to their possessing chewing mouthparts, leaf litter is comminuted prior to being ingested, facilitating both enzymatic degradation during gut passage and microbial colonization of egested faeces. Digestion of food through endogenous enzymes produced in the caeca of the midgut glands (hepatopancreas) and through microbial enzymes, either ingested along with microbially colonized food or secreted by microbial endosymbionts, mainly takes place in the anterior part of the hindgut. Digestive processes include the activity of carbohydrases, proteases, dehydrogenases, esterases, lipases, arylamidases and oxidases, as well as the nutritional utilization of microbial cells. Absorption of nutrients is brought about by the hepatopancreas and/or the hindgut epithelium, the latter being also involved in osmoregulation and water balance. Minerals and metal cations are effectively extracted from the food, while overall assimilation efficiencies may be low. Heavy metals are stored in special organelles of the hepatopancreatic tissue. Nitrogenous waste products are excreted via ammonia in its gaseous form, with only little egested along with the faeces. Nonetheless, faeces are characterized by high nitrogen content and provide a favourable substrate for microbial colonization and growth. The presence of a dense microbial population on faecal material is one reason for the coprophagous behaviour of terrestrial isopods. For the same reason, terrestrial isopods prefer feeding on decaying rather than fresh leaf litter, the former also being more palatable and easier to digest. Acceptable food sources are detected through distance and contact chemoreceptors. The 'quality' of the food source determines individual growth, fecundity and mortality, and thus maintenance at the population level. Due to their physiological adaptations to feeding on and digesting leaf litter, terrestrial isopods contribute strongly to nutrient recycling during decomposition processes. Yet, many of these adaptations are still not well understood.  相似文献   

12.
Wolbachia bacteria are obligate intracellular alpha-Proteobacteria of arthropods and nematodes. Although widespread among isopod crustaceans, they have seldom been found in non-isopod crustacean species. Here, we report Wolbachia infection in fourteen new crustacean species. Our results extend the range of Wolbachia infections in terrestrial isopods and amphipods (class Malacostraca). We report the occurrence of two different Wolbachia strains in two host species (a terrestrial isopod and an amphipod). Moreover, the discovery of Wolbachia in the goose barnacle Lepas anatifera (subclass Thecostraca) establishes Wolbachia infection in class Maxillopoda. The new bacterial strains are closely related to B-supergroup Wolbachia strains previously reported from crustacean hosts. Our results suggest that Wolbachia infection may be much more widespread in crustaceans than previously thought. The presence of related Wolbachia strains in highly divergent crustacean hosts suggests that Wolbachia endosymbionts can naturally adapt to a wide range of crustacean hosts. Given the ability of isopod Wolbachia strains to induce feminization of genetic males or cytoplasmic incompatibility, we speculate that manipulation of crustacean-borne Wolbachia bacteria might represent potential tools for controlling crustacean species of commercial interest and crustacean or insect disease vectors.  相似文献   

13.
The subject of ion regulation in invertebrates is discussed, using a variety of invertebrate model species and approaches that range from the whole-organism level to tissue, subcellular, and molecular levels to illustrate the future direction of the field. These organisms inhabit a variety of aquatic, freshwater, and terrestrial environments, showing specific adaptations to each environment. This overview discusses mechanisms of metal detoxification and the presence of Cl-ATPase in marine organisms to avoid excess intracellular Cl(-); Ca(2+) regulation and endocrine aspects of adaptations to transitional (semiterrestrial) environments; adaptations to Ca(2+)-poor freshwater, particularly the reabsorption of Ca(2+) through specific transporters found in the urine; and finally, ionoregulatory mechanisms for life on land, such as Ca(2+) conservation during molting in isopods and the presence of K(+) channels in insect Malpighian tubules. Convergent mechanisms for dealing with similar problems in dissimilar habitats are discussed, taking into consideration that invertebrates will continue to serve as model systems for the evolution of ionoregulation in different habitats.  相似文献   

14.
To evaluate the influence of wetland types on the distribution of terrestrial isopods, species richness, relative abundance and diversity indices were studied in the supralittoral zone of 95 wetlands in the north‐western of Tunisian dorsal, belonging to six types: lagoon, hill reservoir, river, dam, lake and sebkha. We tested the following hypothesis: (i) is isopod diversity influenced by wetland types? (ii) is isopod diversity influenced by bioclimatic zones? and (iii) what are the environmental factors influencing isopod distribution? A total of 3255 individuals belonging to twenty species of terrestrial isopods were captured. Species richness differs significantly between wetland types. A highly significant positive relationship between species richness and both humidity and altitudinal gradient was described. The dendrogram of similarities showed a divergence of the lagoons compared to the remaining wetland types.  相似文献   

15.
Since any given trait of an organism is considered to represent either an adaptation to the environment or a phylogenetic constraint, most physiological gut characteristics should be adaptive in terms of optimizing digestion and utilization of the respective food source. Among the Crustacea, the taxon Oniscidea (Isopoda) is the only suborder that includes, and essentially consists of, species inhabiting terrestrial environments, feeding on food sources different from those of most other Crustacea (i.e., terrestrial leaf litter). Microelectrodes were used to assay physiological characteristics of the gut lumen from representatives of four families of terrestrial isopods: Trichoniscus pusillus (Trichoniscidae), Oniscus asellus (Oniscidae), Porcellio scaber (Porcellionidae), and Trachelipus rathkii (Trachelipodidae). Microsensor measurements of oxygen pressure (Clark-type oxygen microelectrodes) revealed that O2-consuming processes inside the gut lumen created steep radial oxygen gradients. Although all guts were oxic in the periphery, the radial center of the posterior hindgut was micro-oxic or even anoxic in the adults of the larger species. The entire gut lumen of all examined species was strongly oxidizing (Pt microelectrodes; apparent redox potential, Eh: +600–700 mV). Such conditions would allow for the coexistence of aerobic and anaerobic microorganisms, with both oxidative and fermentative activities contributing to digestion. Although bacterial O2 consumption was also observed in the midgut glands (hepatopancreas), they remained entirely oxic, probably owing to their large surface-to-volume ratio and high oxygen fluxes across the hepatopancreatic epithelium into the gland lumen. Measurements with pH microelectrodes (LIX-type) showed a slight pH gradient from acidic conditions in the anterior hindgut to neutral conditions in the posterior hindgut of O. asellus, P. scaber and T. rathkii. By contrast, the pH in the hindgut lumen of T. pusillus was almost constant. We discuss to what extent these physiological characteristics may be adaptive to the digestion of terrestrial food sources that are rich in lignocellulose.  相似文献   

16.
Growth rate, survival, mean size of reproductive females and fertility were assessed in the terrestrial isopod Porcellionides pruinosus fed an artificial diet supplemented with potential sources of symbionts. The acquisition of symbionts was experimentally manipulated through feeding experiments to investigate the effect of the acquisition mechanism on isopod performances over 4 months. Five groups of isolated newborn were fed differently (basal diet or control; basal diet with leaf litter, faeces, gut; and basal diet mixed with antibiotic), weighed and counted at 0, 2 and 4 months. Growth rate differed significantly between diet groups at 2 and 4 months. No significant difference of survival was detected, but groups fed on a diet with supplements (leaf litter, faeces and gut) had a higher rate of survival. Size and fertility of reproductive females differed significantly across diet groups. Our findings showed the importance of the acquisition mode of symbionts on the life history of Oniscidea and the role of diet intake on the performance of P. pruinosus.  相似文献   

17.
 A core group of isopod crustacean genera appears to be present at many coral reef sites. Within these genera, however, species show high local endemicity. Based on the estimated percentage of endemism for the Atlantic (19% for individual sites, 90% for the tropical western Atlantic as a unit), the Indian Ocean (50%), the eastern-central Pacific (80%), and the western Pacific (40%), it is estimated that there are some 5,000 to 13,000 isopod species in the world’s coral reefs, and that some 2,000 to 6,000 of these are endemics. (At present, approximately 4,400 species of marine and 560 species of freshwater isopods have been described.) Based on the crudely estimated relative abundances of other peracaridan crustaceans in coral reefs (compared to isopods), the total diversity of reef amphipods, tanaidaceans, cumaceans, and mysidaceans is approximately 54,500 species. Accepted: 29 August 1997  相似文献   

18.
Living isopods of the suborder Oniscidea (commonly called woodlice) are the only group of Crustacea almost entirely composed of terrestrial forms. Furthermore, woodlice are completely independent from the aquatic environment from which they originally arose. From marine ancestors, woodlice are a key taxon to study the conquest of the land among arthropods because of their interesting gradation of morphological, physiological and behavioral adaptations for terrestriality. However, the origin and evolution of this model group are still poorly known. Herein, we provide a synthesis of the oniscidean fossil record to replace this group in a deep-time context. Because members of the Oniscidea are difficult to fossilize, their fossil record alone is undoubtedly fragmentary and not representative of their complete evolutionary history, but it maintains an important relevance by providing reference points. To date, the first attested occurrences of Oniscidea are recorded from the Early Cretaceous. At this time, woodlice were already widely distributed (from Western Europe to Eastern Asia) with several species. By evaluating phylogenetic studies, palaeobiogeographic context of fossil specimens and current biological considerations, we discuss and support a pre-Pangaean origin of the Oniscidea, in the Late Paleozoic—most likely during the Carboniferous.  相似文献   

19.
We investigated the morphometric characteristics of the hepatopancreatic epithelium in the terrestrial isopod Porcellio scaber during acclimatization to laboratory conditions, during the daily cycle, the molt cycle, and fasting. The hepatopancreatic epithelium was analyzed using computer-assisted microscopy of serial sections of the hepatopancreatic tubes. In addition, the abundance, the distribution, and the size of lipid droplets in the hepatopancreatic epithelium were recorded. The experimental animals were collected in the field and transferred to the laboratory. The hepatopancreatic epithelium was thinner and lipid droplets reduced after 2 months of acclimatization to laboratory conditions. The daily cycle and the molt cycle affected neither the epithelial thickness nor the abundance of lipid droplets. But in animals fasted for 2 weeks, these two parameters were significantly reduced. Based on both the epithelial thickness and the abundance of lipid droplets in B cells, we propose criteria for estimating the stress status of the animals. With the possibility to determine the stress status, many studies on isopods gain in relevance.  相似文献   

20.
The cabbage bugs Eurydema rugosa Motschulsky and Eurydema dominulus (Scopoli) (Heteroptera: Pentatomidae: Strachiini) possess a number of crypts in a posterior region of the midgut, which are filled with bacterial symbiont cells. Here we characterized the gut symbionts of Eurydema stinkbugs using molecular phylogenetic and histological techniques. Specific gammaproteobacteria were consistently identified from the posterior midgut of E. rugosa representing nine populations and E. dominulus representing six populations, respectively. The bacterial 16S rRNA gene sequences were identical within the species but slightly different (98.2% sequence identity) between the species. Molecular phylogenetic analysis revealed that the Eurydema symbionts formed a well-defined monophyletic group in the Gammaproteobacteria. The symbionts were phylogenetically distinct from the gut symbionts of the stinkbug families Acanthosomatidae, Plataspidae, Parastrachiidae, Scutelleridae, and other pentatomid species, suggesting multiple evolutionary origins of the gut symbiotic bacteria among diverse stinkbugs. In situ hybridization confirmed that the symbiont is located in the cavity of the midgut crypts. Aposymbiotic insects of E. rugosa, which were produced by egg surface sterilization, were viable but suffered retarded growth, reduced body weight, and abnormal body color, suggesting the biological importance of the symbiont for the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号