首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was characterized Pectobacterium carotovorum subsp. carotovorum (Pcc) the causal pathogen of watermelon soft rot disease in Iran. Of fifty bacterial isolates with white grey and convex colonies on nutrient agar obtained from symptomatic watermelon, ten isolates were selected for further tests. Pathogenicity tests results showed that all test isolates developed typical water‐soak symptoms after 2 days and signs of soft rot began 4 days after inoculation on watermelon fruits. Based on the phenotypic properties, the isolates were identified as Pectobacterium carotovorum subsp. carotovorum. The 16S rDNA sequences of isolates were 99% similar to the corresponding 16S rDNA sequence of the reference Pcc isolate. BOX and ERIC‐PCR analysis indicated that genetic diversity was present among the isolated Pcc isolates did not relate to the geographic location isolated from. To the best of our knowledge, this is the first study of biochemical and genotypic characterization of Pcc isolates the causal agents of soft rot disease on watermelon, in Iran.  相似文献   

2.
To identify bacteria causing soft rot and blackleg in potato in Finland, pectinolytic enterobacteria were isolated from diseased potato stems and tubers. In addition to isolates identified as Pectobacterium atrosepticum and Dickeya sp., many of the isolated strains were identified as Pectobacterium carotovorum subsp. carotovorum. Phylogenetic analysis and biochemical tests indicated that one of the isolates from potato stems resembled Pectobacterium wasabiae. Furthermore, two blackleg‐causing P. carotovorum strains recently isolated in Europe clustered with P. wasabiae, suggesting that at least some of these isolates were originally misidentified. All the other Finnish P. carotovorum isolates resembled the subsp. carotovorum type strain in biochemical tests but could be clustered into two distinct groups in the phylogenetic analysis. One of the groups mainly contained strains isolated from diseased tubers, whereas the other mainly included isolates from potato stems. In contrast to the tuber isolates, the stem isolates lacked genes in Type III secretion genes, were not able to elicit a hypersensitive response in tobacco leaves and produced only small amounts of autoinducers in the stationary phase in vitro. P. wasabiae isolate was able to cause similar amount of blackleg‐like symptoms as P. atrosepticum in a field experiment with vacuum‐infiltrated tubers, whereas both P. atrosepticum and P. carotovorum isolates reduced emergence and delayed growth more than P. wasabiae. Our findings confirm the presence of P. wasabiae in Finland and show that the Finnish P. carotovorum subsp. carotovorum isolates can be divided into two groups with specific characteristics and possibly also different ecologies.  相似文献   

3.
Soft rot is the most important disease on calla lily in Poland. The isolation of the presumptive pathogen from symptomatic tubers on nutrient agar yielded bacteria with different colony morphology. Of 41 isolates collected, 10 showed pectolytic activity on crystal violet pectate medium and caused soft rot on potato slices. All pectolytic bacteria appeared to be Gram‐negative rods producing typical soft rot on inoculated leaf petioles of calla lily. Bacteria with colonies which morphologically resembled those used for inoculation were re‐isolated from diseased petioles. Their identification was based on phenotypic characters and sequence of the gene fragment coding 16S rRNA. It was found that, in addition to Pectobacterium carotovorum subsp. carotovorum, soft rot of calla lily can be caused by Pectobacterium carotovorum subsp. atrosepticum, Pseudomonas marginalis, Pseudomonas veronii and Chryseobacterium indologenes. The latter two are described for the first time as plant pathogens. The pectolytic activity of all identified bacteria, except that of P. carotovorum subsp. atrosepticum, was lower than that of P. carotovorum subsp. carotovorum, but strains of P. veronii showed a higher activity than P. marginalisand C. indologenes species.  相似文献   

4.
Soft rot disease can be found worldwide on fleshy storage tissues of fruits, vegetables and ornamentals. The soft rot Pectobacterium carotovorum subsp. carotovorum (Pcc) is an important pathogen of Kalanchoe spp. and other ornamental plants. The disease occurs on crops in the field, greenhouses and during transit, resulting great economic damages. The economic importance of crop loss by soft rot bacteria varies by severity of the disease and value of the crop. A destructive disease on Kalanchoe gastonis-bonnierii was observed in commercial ornamental plant greenhouses in Cameron highland and Melaka, Malaysia in 2011. Samples suspected to be infested with Pectobacterium spp. were brought to the laboratory. In pathogenicity test, a suspension of 106?CFU/ml of strains was able to cause soft rot on leaves and stems. A 434?bp banding pattern on 1% agarose gel was produced in polymerase chain reaction (PCR) amplification of pectate lyase encoding gene (Pel gene). PCR amplification of the intergenic transcribed spacer (ITS) (16S–23S rRNA) ITS region with G1 and L1 primers produced two main bands at about 540 and 570?bp. The ITS-PCR products were digested with RsaI restriction enzyme. For discrimination of the P. carotovorum subsp. carotovorum (Pcc) from P. carotovorum subsp. odoriferum (Pco), all isolates subjected to α-methyl glucoside test. All isolates were identified as Pcc based on phenotypic and molecular methods. This is the first report of soft rot disease caused by P. carotovorum subsp. carotovorum on K. gastonis-bonnierii, in Malaysia.  相似文献   

5.
Pectobacteria are one of the most important groups of plant pathogenic bacteria and have been reported in many countries including Iran. Thirty-five Iranian strains of pectobacteria were isolated from potato, cabbage, sugar beet, pepper, carrot, onion, cucumber, turnip and tomato host plants cultivated in Fars province of Iran, in 2013. The genetic diversity among the strains was evaluated using ISSR marker. The tested strains were rod-shape, motile with peritrichous flagella, gram-negative, facultative anaerobes, oxidase-negative, catalase-positive, and were able to cause potato rot, while they could not induce hypersensitive reaction on tobacco leaves. Based on phenotypic criteria, the isolated strains were categorised into three groups. The strains of first, second and third groups were related to Pectobacterium carotovorum subsp. carotovorum, Pectobacterium betavascularum and Dickeya chrysanthemi, respectively. According to ISSR assay, the primers that used in this assay showed significant diversity among the strains and the specific primers GTGC4, GAGC4 and GTG5 confirmed the classification.  相似文献   

6.
Blackleg and soft rot of potato cause economic loss through reduced yield and quality. The causal agents of bacterial blackleg and soft rot of potato were identified based on biological data and sequence analyses of the 16S rDNA gene. Between 2016 and 2018, diseased potato stems and tubers were collected in Chai Prakan District, Chiang Mai Province, and Chiang Khum District, Pa Yao Province. The symptoms included black stem lesions, soft rot on tubers, wilting, break down of the stem vascular ring and foliar yellowing. Of 13 bacterial isolates, five were identified as Pectobacterium carotovorum subsp. brasiliense, four‐Dickeya dadantii, two‐Pseudomonas putida and two‐Bacillus altitudinis. Pathogenicity tests of P. carotovorum subsp. brasiliense and D. dadantii resulted in lower leaves turning yellow and wilting followed by blackleg symptoms on lower stems and maceration of tuber tissue. Symptoms caused by Pputida were yellowing and wilting of leaves. Baltitudinis caused yellowing of the lower leaves and wilting followed by drying of leaf tissue. This is a first report of these bacterial pathogens causing blackleg and soft rot of potato in Thailand.  相似文献   

7.
A multiplex polymerase chain reaction (PCR) assay for simultaneous, fast and reliable detection of the main soft rot and blackleg potato pathogens in Europe has been developed. It utilises three pairs of primers and enables detection of three groups of pectinolytic bacteria frequently found in potato, namely: Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum together with Pectobacterium wasabiae and Dickeya spp. in a multiplex PCR assay. In studies with axenic cultures of bacteria, the multiplex assay was specific as it gave positive results only with strains of the target species and negative results with 18 non‐target species of bacteria that can possibly coexist with pectinolytic bacteria in a potato ecosystem. The developed assay could detect as little as 0.01 ng µL–1 of Dickeya sp. genomic DNA, and down to 0.1 ng µL–1 of P. atrosepticum and P. carotovorum subsp. carotovorum genomic DNA in vitro. In the presence of competitor genomic DNA, isolated from Pseudomonas fluorescens cells, the sensitivity of the multiplex PCR decreased tenfold for P. atrosepticum and Dickeya sp., while no change was observed for P. carotovorum subsp. carotovorum and P. wasabiae. In spiked potato haulm and tuber samples, the threshold level for target bacteria was 101 cfu mL–1 plant extract (102 cfu g–1 plant tissue), 102 cfu mL–1 plant extract (103 cfu g–1 plant tissue), 103 cfu mL–1 plant extract (104 cfu g–1 plant tissue), for Dickeya spp., P. atrosepticum and P. carotovorum subsp. carotovorum/P. wasabiae, respectively. Most of all, this assay allowed reliable detection and identification of soft rot and blackleg pathogens in naturally infected symptomatic and asymptomatic potato stem and progeny tuber samples collected from potato fields all over Poland.  相似文献   

8.
Current identification methods for the soft rot erwinias are both imprecise and time-consuming. We have used the 16S-23S rRNA intergenic transcribed spacer (ITS) to aid in their identification. Analysis by ITS-PCR and ITS-restriction fragment length polymorphism was found to be a simple, precise, and rapid method compared to current molecular and phenotypic techniques. The ITS was amplified from Erwinia and other genera using universal PCR primers. After PCR, the banding patterns generated allowed the soft rot erwinias to be differentiated from all other Erwinia and non-Erwinia species and placed into one of three groups (I to III). Group I comprised all Erwinia carotovora subsp. atroseptica and subsp. betavasculorum isolates. Group II comprised all E. carotovora subsp. carotovora, subsp. odorifera, and subsp. wasabiae and E. cacticida isolates, and group III comprised all E. chrysanthemi isolates. To increase the level of discrimination further, the ITS-PCR products were digested with one of two restriction enzymes. Digestion with CfoI identified E. carotovora subsp. atroseptica and subsp. betavasculorum (group I) and E. chrysanthemi (group III) isolates, while digestion with RsaI identified E. carotovora subsp. wasabiae, subsp. carotovora, and subsp. odorifera/carotovora and E. cacticida isolates (group II). In the latter case, it was necessary to distinguish E. carotovora subsp. odorifera and subsp. carotovora using the α-methyl glucoside test. Sixty suspected soft rot erwinia isolates from Australia were identified as E. carotovora subsp. atroseptica, E. chrysanthemi, E. carotovora subsp. carotovora, and non-soft rot species. Ten “atypical” E. carotovora subsp. atroseptica isolates were identified as E. carotovora subsp. atroseptica, subsp. carotovora, and subsp. betavasculorum and non-soft rot species, and two “atypical” E. carotovora subsp. carotovora isolates were identified as E. carotovora subsp. carotovora and subsp. atroseptica.  相似文献   

9.
Fusarium wilt is an economically important fungal disease of common bean and sugar beet in the Central High Plains (CHP) region of the USA, with yield losses approaching 30% under appropriate environmental conditions. The objective of this study was to characterize genetic diversity and pathogenicity of isolates of Fusarium oxysporum obtained from common bean and sugar beet plants in the CHP that exhibited Fusarium wilt symptoms. A total of 166 isolates of F. oxysporum isolated from diseased common bean plants were screened for pathogenicity on the universal susceptible common bean cultivar ‘UI 114’. Only four of 166 isolates were pathogenic and were designated F. oxysporum f.sp. phaseoli (Fop). A set of 34 isolates, including pathogenic Fop, F. oxysporum f.sp. betae (Fob) isolates pathogenic on sugar beet, and non‐pathogenic (Fo) isolates, were selected for random‐amplified polymorphic DNA (RAPD) analysis. A total of 12 RAPD primers, which generated 105 polymorphic bands, were used to construct an unweighted paired group method with arithmetic averages dendrogram based on Jaccard's coefficient of similarity. All CHP Fop isolates had identical RAPD banding patterns, suggesting low genetic diversity for Fop in this region. CHP Fob isolates showed a greater degree of diversity, but in general clustered together in a grouping distinct from Fop isolates. As RAPD markers revealed such a high level of genetic diversity across all isolates examined, we conclude that RAPD markers had only limited usefulness in correlating pathogenicity among the isolates and races in this study.  相似文献   

10.
Pectobacterium species are enterobacterial plant-pathogenic bacteria that cause soft rot disease in diverse plant species. Previous epidemiological studies of Pectobacterium species have suffered from an inability to identify most isolates to the species or subspecies level. We used three previously described DNA-based methods, 16S-23S intergenic transcribed spacer PCR-restriction fragment length polymorphism analysis, multilocus sequence analysis (MLSA), and pulsed-field gel electrophoresis, to examine isolates from diseased stems and tubers and found that MLSA provided the most reliable classification of isolates. We found that strains belonging to at least two Pectobacterium clades were present in each field examined, although representatives of only three of five Pectobacterium clades were isolated. Hypersensitive response and DNA hybridization assays revealed that strains of both Pectobacterium carotovorum and Pectobacterium wasabiae lack a type III secretion system (T3SS). Two of the T3SS-deficient strains assayed lack genes adjacent to the T3SS gene cluster, suggesting that multiple deletions occurred in Pectobacterium strains in this locus, and all strains appear to have only six rRNA operons instead of the seven operons typically found in Pectobacterium strains. The virulence of most of the T3SS-deficient strains was similar to that of T3SS-encoding strains in stems and tubers.The genus Pectobacterium (formerly Erwinia) contains both narrow- and broad-host-range bacterial plant pathogens that cause soft rot, stem rot, wilt, and blackleg in species belonging to over 35% of plant orders (20). Four Pectobacterium species have been described: Pectobacterium atrosepticum, Pectobacterium betavasculorum, Pectobacterium carotovorum, and Pectobacterium wasabiae (9). The recently described organism P. carotovorum subsp. brasiliensis is genetically distinct from previously described Pectobacterium taxa; approximately 82% of its genes are shared with P. atrosepticum, and 84% of its genes are shared with P. carotovorum subsp. carotovorum, while 13% of its genes are found in neither P. atrosepticum nor P. carotovorum subsp. carotovorum (7, 10, 20). To date, only P. carotovorum subsp. carotovorum and P. atrosepticum have been reported to occur in the same field (14, 21). P. carotovorum subsp. carotovorum is found worldwide, and P. atrosepticum is found in cool climates; while P. carotovorum subsp. brasiliensis has been found only in Brazil, Israel, and the United States, it is likely to have a wider distribution (20). Compared to the ecology and genetics of P. carotovorum subsp. carotovorum and P. atrosepticum, little is known about the ecology and genetics of P. betavasculorum, P. wasabiae, or P. carotovorum subsp. brasiliensis.Pectobacterium strains isolated from potato are diverse based on serology, genome structure, and fatty acid composition (5, 35). Previous epidemiological studies of pectolytic Enterobacteriaceae were complicated by the diversity of this group and the lack of tools capable of placing all isolates into clades. For example, Gross et al. (14) were unable to classify over 50% of Pectobacterium isolates obtained from potato, and Pitman et al. (23) were unable to type 13% of their isolates. Novel PCR-based methods potentially capable of classifying all Pectobacterium isolates have been described, but they were developed prior to the recognition of P. carotovorum subsp. brasiliensis (1, 34).The main virulence determinants of Pectobacterium are the pectolytic enzymes secreted through the type II secretion system. Although these enzymes are required for development of symptoms, many other virulence genes have been shown to contribute to Pectobacterium pathogenicity, including the type III secretion system (T3SS) genes, the cfa gene cluster, and the type IV secretion system genes (3, 15, 19). Recent genomic analysis showed that some of these gene clusters, such as the cfa and type IV secretion system cluster genes, as well as genes important for interactions with insects, are present in only some Pectobacterium species (10). Thus, Pectobacterium species appear to use different genetic tools to overcome plant host barriers and to interact with insect vectors.Many gram-negative pathogenic bacteria secrete virulence proteins, known as effectors, through the T3SS into host cells. Once inside host cells, the effectors manipulate host defenses and promote bacterial growth (13). Unlike many other gram-negative plant pathogens, Pectobacterium does not require the T3SS for pathogenicity. Rather, this secretion system makes a small, but measurable, contribution to the early stages of P. carotovorum growth in leaves of the model plant Arabidopsis thaliana (26) and contributes to the virulence of P. atrosepticum on potato (15). Recently, we isolated Pectobacterium strains that lack the T3SS from potatoes and also found P. wasabiae and P. carotovorum subsp. brasiliensis on potatoes in Wisconsin (35). The first goal of this study was to determine if P. wasabiae and P. carotovorum subsp. brasiliensis are common in agricultural fields or if soft rot disease is typically caused by P. carotovorum subsp. carotovorum and P. atrosepticum, which have been the focus of nearly all previous studies of potato soft rot, stem rot, and blackleg disease. Second, since we recently isolated a strain lacking the T3SS (35), we also aimed to determine if strains lacking the T3SS are common in infected potatoes and if these strains tend to be less virulent on potato stems and tubers than strains encoding a T3SS.  相似文献   

11.
Pectobacterium carotovorum and Pectobacterium atrosepticum are dreadful causal agents of potato soft rot. Actually, there are no efficient bactericides used to protect potato against Pectobacterium spp. Biological control using actinobacteria could be an interesting approach to manage this disease. Thus, two hundred actinobacteria isolated from Moroccan habitats were tested for their ability to inhibit in vitro 4 environmental Pectobacterium strains and the two reference strains (P. carotovorum CFBP 5890 and P. atrosepticum CFBP 5889). Eight percent of these isolates were active against at least one of the tested pathogens and only 2% exhibited an antimicrobial activity against all tested Pectobacterium strains. Four bioactive isolates having the greatest pathogen inhibitory capabilities and classified as belonging to the genus Streptomyces species through 16S rDNA analysis were subsequently tested for their ability to reduce in vivo soft rot symptoms on potato slices of Bintje, Yukon Gold, Russet and Norland cultivars caused by the two pathogens P. carotovorum and P. atrosepticum. This test was carried out by using biomass inoculums and culture filtrate of the isolates as treatment. Among these, strain Streptomyces sp. OE7, reduced by 65–94% symptom severity caused by the two pathogens on potato slices. Streptomyces OE7 showed a potential for controlling soft rot on potato slices and could be useful in an integrated control program against potato soft rot pathogens in the objective to reduce treatments with chemical compounds.  相似文献   

12.
Soft rot disease of Amorphophallus konjac is caused by Pectobacterium species. Infected corms are considered a primary and important source of inocula. Based on the 16S rDNA sequences of the soft rot pathogens, one pair of specific primers was designed to identify the soft rot disease by real-time PCR and the other two were used to identify the pathogens of Pectobacterium carotovorum subsp. carotovorum. and P. chrysanthemi respectively. According to the results, a single cell of Pectobacterium could be detected by real-time PCR with the designed primer pair, while at least 100 bacteria were required for conventional PCR. Moreover, the two special primers can directly and accurately authenticate to Pectobacterium carotovorum subsp. carotovorum and P. chrysanthemi by the conventional PCR system without testing the pathogenicity, biochemical and phenotypic characterizations and so on. In conclusion, the PCR-based techniques showed several significant advantages in identifying the soft rot pathogens from konjac, such as higher sensitivity, rapidness and precision, and it could be widely used in seed quarantine.  相似文献   

13.
Two isolates of Laetisaria arvalis and 10 of binucleate Rhizoctonia spp. (BNR) from the Ohio sugar beet production area, were tested in the greenhouse and field for biocontrol of Rhizoctonia crown and root rot of sugar beet, caused by Rhizoctonia solani anastomosis group 2, type 2. L. arvalis was ineffective in standard greenhouse tests, and the single isolate used in the field was generally ineffective. Seven of 10 BNR isolates effectively controlled crown and root rot in greenhouse tests. Delayed application of biocontrol agents to plants 5 – 10 wk old was generally more effective than applications made at planting. A BNR isolate significantly reduced % plant loss and disease ratings and increased yield in a 1985 field test as compared with the control infested with R. solani alone. Two BNR isolates were effective in a 1986 field test and increased yields c. 22% in comparison to a L. arvalis treatment, which did not differ from the R. solani-infested control. The Ohio binucleate Rhizoctonia isolates appear to have considerable potential as applied biocontrol agents and may play a role in the natural ecology of R. solani in the sugar beet production area of Ohio.  相似文献   

14.
15.
The study of plant parasitic nematodes such as Meloidogyne spp. and their interactions with phytopathogenic bacteria remains underexplored. One of the challenges towards establishing such interactions is the dependence on symptom development as a measure of interaction. In this study, mCherry was employed as a reporter protein to investigate the interaction between the soft rot Enterobacteriaceae (SRE) Pectobacterium carotovorum subsp. brasiliensis (Pcb) and root‐knot nematode (Mincognita). Pectobacterium carotovorum subsp. brasiliensis was transformed with pMP7604 generating Pcb_mCherry strain. This strain was shown to attach to the surface coat of M.incognita J2 at the optimum temperature of 28°C. This suggests that RKN juveniles may play a role in disseminating Pcb in soils that are heavily infested with Pcb. The presence of RKN juveniles was shown to play a role in introducing Pcb_mCherry into potato tubers potentially acting as a source of latent tuber infections.

Significance and Impact of the Study

This study uses fluorescent reporter protein tagging as a tool to demonstrate the interaction between root‐knot nematode (Meloidogyne incognita) and the soft rot Enterobacteriacea (Pectobacterium carotovorum subsp. brasiliensis). Introduction of Pectobacterium through wounds generated by second‐stage juveniles (J2) into potato tubers was demonstrated. These results suggest that RKN juveniles can facilitate latent infection of potato tubers in the soil. These findings have important implications in the management of RKN and SRE in seed potato production. Furthermore, this tool can be used to study other nematode–bacteria interactions that have not been previously studied.  相似文献   

16.
A lateral flow immunoassay for the rapid detection of Clavibacter michiganensis subsp. sepedonicus bacteria causing potato ring rot was developed. Multimembrane composites (test strips) containing polyclonal antibodies against the bacteria and gold nanoparticle-antibody conjugates were used for the analysis. The test strips are suitable for the analysis of potato tuber and leaf extracts within 10 min; the detection limit of bacteria is 4 × 105 cells/mL. No cross-reactivity with strains of Clavibacter michiganensis subsp. michiganensis, Pectobacterium carotovorum subsp. carotovorum and saprophytes of healthy potato plants was detected. The results of analysis of 26 potato samples by the developed tests were compared with those obtained by the PCR method and using the commercial enzyme immunoassay kits. The results of lateral flow immunoassay were confirmed in 96.2% of cases, which supports the high correlation with other analytical approaches. The developed immunoassay may be considered as a promising means of phytosanitary control.  相似文献   

17.
Plant ferredoxin‐like protein (PFLP) is a photosynthesis‐type ferredoxin (Fd) found in sweet pepper. It contains an iron–sulphur cluster that receives and delivers electrons between enzymes involved in many fundamental metabolic processes. It has been demonstrated that transgenic plants overexpressing PFLP show a high resistance to many bacterial pathogens, although the mechanism remains unclear. In this investigation, the PFLP gene was transferred into Arabidopsis and its defective derivatives, such as npr1 (nonexpresser of pathogenesis‐related gene 1) and eds1 (enhanced disease susceptibility 1) mutants and NAHG‐transgenic plants. These transgenic plants were then infected with the soft‐rot bacterial pathogen Pectobacterium carotovorum subsp. carotovorum (Erwinia carotovora ssp. carotovora, ECC) to investigate the mechanism behind PFLP‐mediated resistance. The results revealed that, instead of showing soft‐rot symptoms, ECC activated hypersensitive response (HR)‐associated events, such as the accumulation of hydrogen peroxide (H2O2), electrical conductivity leakage and expression of the HR marker genes (ATHSR2 and ATHSR3) in PFLP‐transgenic Arabidopsis. This PFLP‐mediated resistance could be abolished by inhibitors, such as diphenylene iodonium (DPI), 1‐l ‐trans‐epoxysuccinyl‐leucylamido‐(4‐guanidino)‐butane (E64) and benzyloxycarbonyl‐Val‐Ala‐Asp‐fluoromethylketone (z‐VAD‐fmk), but not by myriocin and fumonisin. The PFLP‐transgenic plants were resistant to ECC, but not to its harpin mutant strain ECCAC5082. In the npr1 mutant and NAHG‐transgenic Arabidopsis, but not in the eds1 mutant, overexpression of the PFLP gene increased resistance to ECC. Based on these results, we suggest that transgenic Arabidopsis contains high levels of ectopic PFLP; this may lead to the recognition of the harpin and to the activation of the HR and other resistance mechanisms, and is dependent on the protease‐mediated pathway.  相似文献   

18.
The objective of this study was to develop a multiplex detection and identification protocol for bacterial soft rot coliforms, namely Pectobacterium wasabiae (Pw), Pectobacterium atrosepticum (Pba) and Dickeya spp., responsible for potato blackleg and tuber soft rot. The procedures were derived from the phylogenetic relationships of these and other Enterobacteriaceae based on recA sequences. The group of Pw strains was highly homogeneous and could be distinguished from the other species. A ligation‐based method for detection of Pw was developed. Five padlock probes (PLPs) were designed, targeting recA sequences to identify the Pw, Pba or Dickeya spp., whereas a sixth probe recognised recA sequences of all soft rot coliforms including Pectobacterium carotovorum subsp. carotovorum (Pcc). Two PLP‐based applications were developed: one using real‐time PCR and one using universal microarrays. Assay sensitivity and specificity were demonstrated using 71 strains of Pw, Pcc, Pba and Dickeya spp. Both multiplex methods can be potentially used for seed testing and in ecological studies, but further validation is required.  相似文献   

19.
During summer 2011 in South Korea, severe fruit rot of paprika was observed, causing severe economic losses in paprika production. Symptoms of fruit and pedicel decay were consistent with symptoms caused by Pectobacterium carotovorum subsp. brasiliense (Pcb) as recently described in Brazil, the United States, Israel and South Africa. Physiological analysis and pathogenicity test of strains isolated from paprika fruit revealed that the pathogen was the bacterium Pcb. Sequencing and phylogenetic analysis of the 16S rDNA and partial 16S–23S rDNA intergenic spacer region confirmed that the isolates were Pcb. This is the first report of Pcb in Korea, which has a significant economic impact on Korean paprika production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号