首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Ng 《Applied microbiology》1982,43(5):1016-1019
The effects of various growth conditions on the heat resistance of Arizona bacteria grown in a continuous-culture device (chemostat) were studied. Using either glucose, NH4Cl, NaH2PO4, or MgCl2 as the rate-limiting nutrient, it was found that the heat resistance, in all cases depended on the dilution rate and, hence, growth rate of the culture. Cells grown at high dilution rates were less heat resistant than those grown at low dilution rates. If, however, the dilution rate was maintained at a constant rate, the higher the growth temperature, the more heat resistant were the cells. Also at any given dilution rate, the cells were most heat resistant when grown at a near neutral pH. Most survival curves were biphasic in shape, indicating the presence in the population of two fractions of cells, one fraction being more resistant than the other. The size of the more heat-resistant fraction varied from almost 100% in very slow-growing cultures to practically 0% in cultures grown at a dilution rate of 0.67 h-1.  相似文献   

2.
Summary Taken cells from cultures ofRhizobium phaseoli grown at different dilution rates were tested for plant growth promotion in a bioassay withPhaseolus vulgaris, before and after storage in water for one month. Cells grown at higher dilution rates showed a greater loss of effectiveness  相似文献   

3.
Regulation of lactose (beta-D-galactosidase) synthesis in the lactose-utilizing yeast Candida pseudotropicalis was studied. The enzyme was inducible by lactose and galactose. When grown on these sugars the enzyme level of the yeast was 20 times or higher than when grown on glycerol. The Km and optimal pH were similar for the lactase induced either by lactose or galactose. The hydrolysis of o-nitrophenyl-beta-D-galactopyranoside by the lactase was inhibited by galactose and several analogs and galactosides, but not by glucose. Lactose uptake activity observed in lactose-grown cells was very reduced in cells grown on glucose or galactose. Glucose repressed the induction of lactase, but not the metabolic system for galactose utilization. In continuous culture on lactose medium at dilution rates below 0.2 h-1 the specific lactase activity was higher than in batch cultures and decreased with increases in dilution rate. Lactase was induced by pulses of lactose and galactose in cells growing on glucose, but only at low dilution rates were the steady-state concentration of glucose was very low.  相似文献   

4.
Bacteroides fragilis NCTC 9343 has been grown in continuous cultures with glucose as growth-limiting factor. At pH 7.0 and at a dilution rate of 0.07 per h, glucose limited growth in concentrations up to 0.6%. Maximal cell yield and productivity were obtained with 0.87% glucose in the inflowing medium. A pH of 7.0 was optimal for growth. With 0.6% glucose in the fresh medium and at pH 7.0, cell yield and productivity were highest at a dilution rate of 0.07 per h and 0.11 per h, respectively. At dilution rates higher than 0.07 per h, glucose was no longer growth limiting, and at dilution rates above 0.11 per h, another compound seemed to have replaced glucose also as energy source. When grown in batch cultures at pH 7.0, the best yields of B. fragilis was achieved with 0.6% glucose in the fresh medium. The highest specific growth rate (mum) determined from viable counts was 0.45, corresponding to a mean generation time of 92 min.  相似文献   

5.
Osmotic stress diminishes cell productivity and may cause cell inactivation in industrial fermentations. The quantification of metabolic changes under such conditions is fundamental for understanding and describing microbial behavior during bioprocesses. We quantified the gradual changes that take place when a lysine-overproducing strain of Corynebacterium glutamicum is grown in continuous culture with saline gradients at different dilution rates. The use of compatible solutes depended on environmental conditions; certain osmolites predominated at different dilution rates and extracellular osmolalities. A metabolic flux analysis showed that at high dilution rates C. glutamicum redistributed its metabolic fluxes, favoring energy formation over growth. At low dilution rates, cell metabolism accelerated as the osmolality was steadily increased. Flexibility in the oxaloacetate node proved to be key for the energetic redistribution that occurred when cells were grown at high dilution rates. Substrate and ATP maintenance coefficients increased 30- and 5-fold, respectively, when the osmolality increased, which demonstrates that energy pool management is fundamental for sustaining viability.  相似文献   

6.
When Prevotella ruminicola 23 was grown in a defined medium containing a vitamin mixture, significant amounts of propionate were formed. Succinate and acetate were the major fermentation acids produced when vitamins were omitted, and further experiments demonstrated that propionate formation was dependent on vitamin B12. When the organism was grown in continuous culture at dilution rates of less than 0.20 h-1, propionate and acetate were the predominant fermentation products and little succinate was formed when vitamin B12 was present. However, at higher dilution rates, propionate formation declined and succinate accumulated. Since cell protein yields were reduced 15 to 25% in the absence of vitamin B12, the pathway for propionate formation may contain an energy-conserving step.  相似文献   

7.
When Prevotella ruminicola 23 was grown in a defined medium containing a vitamin mixture, significant amounts of propionate were formed. Succinate and acetate were the major fermentation acids produced when vitamins were omitted, and further experiments demonstrated that propionate formation was dependent on vitamin B12. When the organism was grown in continuous culture at dilution rates of less than 0.20 h-1, propionate and acetate were the predominant fermentation products and little succinate was formed when vitamin B12 was present. However, at higher dilution rates, propionate formation declined and succinate accumulated. Since cell protein yields were reduced 15 to 25% in the absence of vitamin B12, the pathway for propionate formation may contain an energy-conserving step.  相似文献   

8.
Osmotic stress diminishes cell productivity and may cause cell inactivation in industrial fermentations. The quantification of metabolic changes under such conditions is fundamental for understanding and describing microbial behavior during bioprocesses. We quantified the gradual changes that take place when a lysine-overproducing strain of Corynebacterium glutamicum is grown in continuous culture with saline gradients at different dilution rates. The use of compatible solutes depended on environmental conditions; certain osmolites predominated at different dilution rates and extracellular osmolalities. A metabolic flux analysis showed that at high dilution rates C. glutamicum redistributed its metabolic fluxes, favoring energy formation over growth. At low dilution rates, cell metabolism accelerated as the osmolality was steadily increased. Flexibility in the oxaloacetate node proved to be key for the energetic redistribution that occurred when cells were grown at high dilution rates. Substrate and ATP maintenance coefficients increased 30- and 5-fold, respectively, when the osmolality increased, which demonstrates that energy pool management is fundamental for sustaining viability.  相似文献   

9.
The relationship between oxygen concentration and growth rate in the yeast Trichosporon cutaneum was studied. In order to establish the conditions for purely oxygen-limited growth, the cells were first grown in a carbon-limited chemostat, and kinetic parameters determined. The cells were then grown in an oxygen-limited chemostat at different dilution rates yielding different oxygen uptake rates. The steady-state dissolved oxygen tension was found at each dilution rate and the corresponding equilibrium dissolved oxygen tension was found at each dilution rate and the corresponding equilibrium dissolved oxygen concentration determined in the effluent medium. The relationship between oxygen concentration and growth rate followed Monod-type kinetics with an apparent K(O) of 4.38 x 10(-6)M.  相似文献   

10.
Amino acid consumption was studied with batch and continuous chemostat cultures of Chloroflexus aurantiacus grown phototrophically in complex medium with casamino acids (Pierson and Castenholz 1974). Amino acids like Arg, Asx, Thr, Ala, Tyr, which were utilized during the early exponential phase by cells grown in batch cultures were consumed in chemostat cultures essentially at any of the dilution rates employed (0.018–0.104 h-1). Those amino acids which were taken up during subsequent phases of growth were consumed in chemostat cultures preferentially at low dilution rates. For example, the consumption of Glx was enhanced during the late exponential phase and at low dilution rates. At high dilution rates Glx was not consumed at all. Since Glx utilization largely paralleled bacteriochlorophyll formation, it is discussed that formation of the photopigment depends on the intracellular availability of Glu as the exclusive precursor for tetrapyrrole synthesis.  相似文献   

11.
The effects of medium composition, nutrient limitation and dilution rate on the loss of the recombinant plasmid pLG669-z and plasmid-borne β -galactosidase expression were studied in batch and chemostat cultures of Saccharomyces cerevisiae strain CGpLG. The difference in growth rates between plasmid-free and plasmid-containing cells (Δμ) and the rate of segregation (R) were determined and some common factors resulting from the effect of medium composition on plasmid loss were identified. Glucose-limited chemostat cultures of CGpLG grown on defined medium were more stable at higher dilution rates and exhibited Δμ -dominated plasmid loss kinetics. Similar cultures grown on complex medium were more stable at lower dilution rates and exhibited R-dominated plasmid loss kinetics. Overall plasmid stability was greatest in phosphate-limited chemostat cultures grown on defined medium and was least stable in magnesium-limited cultures grown on defined medium. Δμ decreased and R increased with increased dilution rate, irrespective of medium composition. Increased plasmid loss rates at high or low dilution rates would appear to be characteristic of loss kinetics dominated by R or Δμ, respectively. Growth of glucose-limited chemostat cultures on complex medium decreased Δμ values but increased R values, in comparison to those cultures grown on defined medium. Any increased stability that a complex medium-induced reduction of Δμ may have conferred was counteracted by an increased R value. Increased β-galactosidase productivity was correlated with increased plasmid stability only in glucose-limited chemostat cultures grown on defined medium and not in those grown on complex medium. Previous studies have yielded contrasting responses with regard to the effect of dilution rate on recombinant plasmid loss from S. cerevisiae. Our findings can account for these differences and may be generally valid for the stability of similar yeast plasmid constructs. This information would facilitate the design of bioprocesses, where recombinant plasmid instability results in reduced culture productivity. Received 08 July 1996/ Accepted in revised form 14 January 1997  相似文献   

12.
Glucose-limited bean cells (Phaseolus vulgaris L.) were grown in a modified bacterial fermentor at a constant pH of 4.8. The cultures were kept in steady state at different specific growth rates varying from 0.00216 h–1 to 0.0106 h–1. Culture conditions are described that are needed to start a continuous culture. First, it was essential to use log-phase cells as starting material. Second, it was important to increase the dilution rate gradually, otherwise cells in the culture aggregated. Cells grown at the highest dilution rate employed contained twice as much protein per gram dry weight as cells grown at the lowest dilution rate. The composition of the cell walls also varied with the dilution rate in contrast to their relatively constant composition when grown in batch culture.  相似文献   

13.
Streptococcus bovis and Megasphaera elsdenii were grown in continuous culture with maltose as the limiting substrate at dilution rates of 0.36, 0.22, and 0.12 h. After each steady-state turnover, the pH was decreased by adding concentrated HCl to the medium reservoir. Relative counts of the two species at each dilution rate indicated that when the pH was high (6.6 to 6.0), higher dilution rates selected for a higher ratio of S. bovis to M. elsdenii. At intermediate pH (6.0 to 5.4), higher dilution rates once again selected for greater numbers of S. bovis in relation to M. elsdenii, but the increase in S. bovis numbers was much less at the 0.36-h dilution rate. Decreasing the pH below 5.4 caused the ratio of S. bovis to M. elsdenii to increase greatly, and no M. elsdenii cells were seen below pH 5.1. The ratio of the two species could be explained by their relative affinities for maltose if pH was greater than 6.0, but the lower relative numbers of S. bovis in the 0.36-h, intermediate-pH (6.0 to 5.4) incubations could not. Analysis of lactate production by S. bovis in pure culture showed that l-lactate was produced only if the pH was less than 5.2 at dilution rates of 0.22 and 0.12 h and less than 6.0 at a rate of 0.36 h. The lower numbers of S. bovis relative to M. elsdenii in the incubations with a dilution rate of 0.36 h and intermediate pH thus could be explained by utilization of l-lactate by M. elsdenii. The very high numbers of S. bovis at pH less than 5.4 were consistent with the greater tolerance of this organism to low pH.  相似文献   

14.
To determine the effect of a secondary carbon source on biodegradation of a chloroaromatic compound, Pseudomonas cepacia DBO1(pRO101) was grown in continuous cultures on basal salts media containing various mixtures of 2,4-dichlorophenoxyacetic acid (2,4-D) and succinate. Both succinate and 2,4-D were metabolized over the entire range of dilution rates and compositions analyzed (0.05 to 0.6 h-1). 2,4-Dichlorophenol (DCP), the only intermediate detected, accumulated to significant amounts (10 to 21 mg/liter) in the chemostat only when the dilution rate was 0.4 h-1 or greater. At these concentrations, DCP reduced the apparent growth rate of P. cepacia DBO1(pRO101) in batch cultures by 15 to 35% over the apparent growth rate on succinate alone. Succinate fed to the chemostat increased the cell density as well as the percentage of 2,4-D that was consumed at each dilution rate. When the amount of succinate in the feed exceeded the amount of 2,4-D, the specific rates of 2,4-D degradation in the chemostat or by washed cells were significantly lower than the specific rates for cells grown on 2,4-D alone, suggesting repression by succinate. However, when the amount of 2,4-D in the feed exceeded the amount of succinate, the specific rates of 2,4-D degradation remained at values equivalent to or higher than the specific rate for cells grown on 2,4-D alone. DCP accumulated significantly in the washed-cell assay, suggesting that the level of DCP hydroxylase is rate limiting.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
With carrot cells grown in semicontinuous culture with phosphate as limiting nutrient. Dougall and Weyrauch (1980) found that the steady-state culture density was different at different dilution rates. They suggested that the yield constant for biomass was different at different dilution rates. Here the yield constant for biomass for PO(4) (3-), NH(4) (+), Mg(2+), and glucose-limited semicontinuous cultures has been measured directly at two dilution rates. The yield constants for PO(4) (3-), NH(4) (+), and Mg(2+) but not for glucose are different at the two dilution rates. The effects of pH and temperature on the biomass yield constant was measured to extend the number of system parameters examined. Biomass yield constant was changed little with change from 25 to 28 degrees C or from pH 4.2 to pH 5.5. The steady-state levels of anthocyanin were also measured. The responses of anthocyanin levels to the system parameters are different to the biomass responses. The data suggest that at different values of each of the system parameters, the composition and metabolic activities of the cells at steady state in semicontinuous cultures are different.  相似文献   

16.
Sunflower broomrape is a noxious parasitic weed which has caused severe damage to crop ecosystems. Trap crops can release a mixture of allelochemicals to induce the germination of sunflower broomrape. We studied the allelopathic effects of soybean on sunflower broomrape. Fourteen common soybean cultivars were grown in pots. Samples were collected from soybean plants and rhizosphere soil at five growth stages (V1, V3, V5, R2, and R4). The allelopathic effects of soybean reached highest at the V3 stage. Methanolic extracts of soybean roots induced higher broomrape germination than methanolic extracts of stems or leaves. The germination rates induced by root extracts (10-fold dilution) were positively correlated with germination rates induced by stem (10-fold dilution) and leaf extracts (10-fold dilution). The broomrape germination rates induced by root extracts were also positively correlated with soybean nodule diameter and dry weight. The results indicated that soybeans could induce sunflower broomrape germination. We conclude that soybean has the potential to be used as a trap crop for sunflower broomrape.  相似文献   

17.
Cellulomonas uda was grown anaerobically in a chemostat with 3.33 and 11.41 mM cellobiose in the feed medium at dilution rates varying from 0.017 to 0.29/h. Unusual results obtained were analyzed by using curves simulating the steady-state biomass. This unusual behavior could be accounted for by a classical growth model taking end-product inhibition into account. Acetate has been identified to be the major inhibitor in the experimental conditions used. Parameters calculated from experimental observations gave theoretical curves of biomass production versus dilution rate which fitted the experimental points very well.  相似文献   

18.
The steady-state residual glucose concentrations in aerobic chemostat cultures of Saccharomyces cerevisiae ATCC 4126, grown in a complex medium, increased sharply in the respiro-fermentative region, suggesting a large increase in the apparent ks value. By contrast, strain CBS 8066 exhibited much lower steady-state residual glucose concentrations in this region. Glucose transport assays were conducted with these strains to determine the relationship between transport kinetics and sugar assimilation. With strain CBS 8066, a high-affinity glucose uptake system was evident up to a dilution rate of 0.41 h–1, with a low-affinity uptake system and high residual glucose levels only evident at the higher dilution rates. With strain ATCC 4126, the high-affinity uptake system was present up to a dilution rate of about 0.38 h–1, but a low-affinity uptake system was discerned already from a dilution rate of 0.27 h–1, which coincided with the sharp increase in the residual glucose concentration. Neither of the above yeast strains had an absolute vitamin requirement for aerobic growth. Nevertheless, in the same medium supplemented with vitamins, no low-affinity uptake system was evident in cells of strain ATCC 4126 even at high dilution rates and the steady-state residual glucose concentration was much lower. The shift in the relative proportions of the high and low-affinity uptake systems of strain ATCC 4126, which might have been mediated by an inositol deficiency through its effect on the cell membrane, may offer an explanation for the unusually high steady-state residual glucose concentrations observed at dilution rates above 52% of the wash-out dilution rate.  相似文献   

19.
With Candida utilis cells that had been removed directly from a 61 chemostat culture, in steady state, well-coupled mitochondria generally could be isolated. This required a modified snail-gut enzyme procedure that allowed the total processing time to be decreased to 3 h, or less. Examination of these mitochondria in an oxygraph showed the presence of 3 sites of energy conservation when the cells were grown at various dilution rates between 0.1 and 0.45 h-1 in environments that were, successively, glucose-, ammonia-, magnesium-, phosphate- and sulphate-limited. Potassium-limited cells also apparently possessed 3 sites of oxidative phosphorylation when growing at dilution rates greater than 0.2 h-1, but only 2 sites when growing at lower dilution rates. Analysis of cytochrome spectra obtained with these intact mitochondria revealed large quantitative (but not qualitative) differences, depending on the environmental conditions under which the yeast had been cultured. In particular, comparison of the ratio of cytochrome b to cytochrome a showed a pattern of change with dilution rate in mitochondria from potassium-limited cells that was distinctly different from those evident in mitochondria from cells that had been limited in their growth by the availability of other nutrients.  相似文献   

20.
The influence of growth conditions on product formation from glucose by Lactococcus lactis strain NZ9800 engineered for NADH-oxidase overproduction was examined. In aerobic batch cultures, a large production of acetoin and diacetyl was found at acidic pH under pH-unregulated conditions. However, pyruvate flux was mainly driven towards lactate production when these cells were grown under strictly pH-controlled conditions. A decreased NADH-oxidase overproduction accompanied the homolactic fermentation, suggesting that the cellular energy was used with preference to maintain cellular homeostasis rather than for NADH-oxidase overproduction. The end product formation and NADH-oxidase activity were also studied in cells grown in aerobic continuous cultures under acidic conditions. A homoacetic type of fermentation as well as a low NADH-oxidase overproduction were observed at low dilution rates. NADH-oxidase was efficiently overproduced as the dilution rate was increased and consequently metabolic flux through lactate dehydrogenase drastically decreased. Under these conditions the flux limitation via pyruvate dehydrogenase was relieved and this enzymatic complex accommodated most of the pyruvate flux. Pyruvate was also significantly converted to acetoin and diacetyl via alpha-acetolactate synthase. At higher dilution rates, acetate production declined and the cultures turned to mixed-acid fermentation. These results suggest that the need to maintain the cellular homeostasis influenced NADH-oxidase overproduction and consequently the end product formation from glucose in these engineered strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号