首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well documented that prolonged alteration of activity in neuronal networks initiates a number of homeostatic mechanisms including compensatory changes of excitatory and inhibitory synaptic strength. We studied whether this also evokes compensatory changes of short-term synaptic transmission. Using patch-clamp technique in hippocampal cell cultures we examined the effects: of prolonged decrease of neuronal firing evoked by sodium channel blocker: tetrodotoxin (TTX) and ionotropic glutamate receptor antagonist - kynurenate; prolonged enhancement ofneuronal firing evoked by antagonist GABAA receptors - bicuculline on short-term depression of GABAergic synaptic transmission evoked by train of stimuli (5 Hz). We found that both TTX and kynurenate treatments enhance depression of GABAergic transmission, while bicuculline treatment does not. We conclude that alteration of depression of GABAergic transmission evoked by the prolonged decrease of neuronal activity may contribute to homeostatic plasticity in hippocampal neuronal networks.  相似文献   

2.
Ivanova  S. Y.  Storozhuk  M. V.  Kostyuk  P. G. 《Neurophysiology》2002,34(2-3):144-146
Paired pulse depression (PPD) of GABA-ergic IPSC was studied in rat hippocampal cell cultures. Synaptic responses were evoked by local extracellular stimulation of the presynaptic units; a whole-cell patch-clamp technique was employed to record responses (IPSC) from the postsynaptic neurons. Paired stimulation (100-msec-long interstimulus interval) resulted in depression of the second IPSC amplitude (IPSC2). This was usually accompanied by an increase in the coefficient of variation (CV) of IPSC2 comparing with that of IPSC1. These results support the involvement of presynaptic mechanism(s) in PPD and suggest a possibility to use PPD alteration as an indicator for the presynaptic origin of modulatory effects. To check this suggestion, we tested whether alteration of the quantum content would affect PPD. We found that reduction of the transmitter release by application of Cd2+ decreased PPD. Post-tetanic potentiation, a well-established presynaptic phenomenon, increased PPD. We conclude that PPD changes may be used as a test for the involvement of presynaptic changes.  相似文献   

3.
Brief depolarization of postsynaptic neurons in hippocampus and cerebellum results in a transient depression of GABAergic inhibitory input, called "depolarization-induced suppression of inhibition" (DSI). We studied whether a similar phenomenon occurs in the rat neocortical neurons. Using patch-clamp technique in neocortical cell cultures we examined the effects of a 5-second depolarization of postsynaptic neurons on evoked GABAergic inhibitory post-synaptic currents (IPSCs). We found that the depolarization evoked a suppression of IPSC amplitude in 6 out of 26 neuronal pairs tested. The suppression of IPSC amplitude lasted for approximately 70 seconds and was accompanied by changes of paired-pulse ratio and IPSC coefficient of variation (CV), which is suggestive of a presynaptic mechanism. These results are in agreement with previous observations in hippocampal cell cultures and suggest that neocortical neurons express DSI.  相似文献   

4.
Vanilloid receptors 1 (VRs1) expressed in a subpopulation of sensory neurons and responsible for processing of chemical and thermal noxious stimuli were also shown to be expressed in several cerebral structures and to be involved in the regulation of glutamatergic synaptic transmission. In this study, we started to investigate the possibility that VRs1 are also involved in the regulation of GABA-ergic synaptic transmission. For this purpose, the effect of a VR1 agonist, capsaicin, on spontaneous GABA-ergic inhibitory postsynaptic currents (IPSCs) was studied in hippocampal cell cultures using a patch-clamp technique. It was found that capsaicin (10 μM) decreased both the frequency and amplitude of spontaneous IPSCs. This finding suggests the involvement of VRs1 in the regulation of neuronal firing in some GABA-ergic interneurons and in the modulation of the efficacy of GABA-ergic synaptic transmission. However, considering the direction of the effect (a decrease in the IPSC frequency) and lack of its desensitization, the involvement of other receptor(s) also cannot currently be ruled out. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 364–367, July–August, 2006.  相似文献   

5.
Homeostatic synaptic plasticity is important for maintaining stability of neuronal function, but heterogeneous expression mechanisms suggest that distinct facets of neuronal activity may shape the manner in which compensatory synaptic changes are implemented. Here, we demonstrate that local presynaptic activity gates a retrograde form of homeostatic plasticity induced by blockade of AMPA receptors (AMPARs) in cultured hippocampal neurons. We show that AMPAR blockade produces rapid (<3 hr) protein synthesis-dependent increases in both presynaptic and postsynaptic function and that the induction of presynaptic, but not postsynaptic, changes requires coincident local activity in presynaptic terminals. This "state-dependent" modulation of presynaptic function requires postsynaptic release of brain-derived neurotrophic factor (BDNF) as a retrograde messenger, which is locally synthesized in dendrites in response to AMPAR blockade. Taken together, our results reveal a local crosstalk between active presynaptic terminals and postsynaptic signaling that dictates the manner by which homeostatic plasticity is implemented at synapses.  相似文献   

6.
The spontaneous development of synaptic activity (SSA) was studied in cell cultures of chick embryo spinal cord. The complicated time structure of the SSA, an important early-stage characteristic of which was giant inhibitory postsynaptic currents (IPSC), was demonstrated. The ionic nature and pharmacological sensitivity of these IPSC suggest that glycine is their transmitter. Emergence of excitatory postsynaptic currents (EPSC) and complex antagonistic relationships between excitatory and inhibitory SSA was detected later. Possible mechanisms for maintenance of synaptic activity during the inhibitory function are discussed. Correlations between the regularities of synaptic transmission development that we have disclosed and neuronal circuit electrical activity are examined.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the USSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 280–290, May–June, 1991.  相似文献   

7.
Several forms of short-term synaptic plasticity of GABA-ergic synaptic transmission selectively expressed only in a fraction of synaptic connections have been described earlier. In particular, this is the phenomenon termed “depolarization-induced suppression of inhibition” (DSI), a transient suppression of GABA-ergic synaptic transmission evoked by postsynaptic spike firing or brief depolarization of the membrane of postsynaptic neurons. On the other hand, the same tetanic stimulation (30 sec−1, 4 sec) of the presynaptic neuron also revealed the heterogeneity of GABA-ergic synaptic connections: about 45% of the connections were facilitated, while 55% were depressed. In this work, we show that post-tetanic depression is predominantly expressed in neuronal pairs susceptible to DSI, and that both phenomena have a similar time course. Considering our own results and the retrograde involvement of endocannabinoids in DSI, we hypothesize that post-tetanic depression is also due to the release of endocannabinoids acting, in the latter case, on their autoreceptors.  相似文献   

8.
At present, there are no direct methods to determine the number of synaptic receptor-related channels activated in the course of synaptic transmission (N) or a value of the single-channel conductance (γ). Peak-scaled nonstationary fluctuation analysis (PS NSFA) should be considered the most well-developed indirect approach used for estimating these parameters. Despite the relatively wide using of this approach for the analysis of various synaptic currents, some aspects of possible errors that can occur in the course of data acquisition or their subsequent processing have not been studied. We examined in detail the problem of applicability of PS NSFA in the study of spontaneous and evoked GABA-ergic inhibitory postsynaptic currents (IPSCs). IPSCs were recorded using a dual patch-clamp technique from hippocampal neurons growing in low-density cultures. Parameters of the recorded IPSCs and values for different components of GABA-ergic synaptic transmission reported earlier were used for simulations and PS-NSFA analysis. In Monte Carlo computer simulations of evoked IPSCs, the influence of series resistance, background noise, asynchronicity of transmitter release, GABAA channel properties, dendritic attenuation, and instrumental filtering on γ estimates obtained by PS NSFA was examined. We concluded that the γ and, consequently, N values may be satisfactorily estimated by the suggested approach using spontaneous and evoked IPSCs recorded in inhibitory synaptic connections in hippocampal cultures within a wide range of experimental conditions. We also estimated the mean of the single-channel conductance of synaptic GABAA receptors in neurons from primary hippocampal cultures and found that this value (29 ± 5 pS) agrees well with the high conductance of single synaptic GABAA receptors observed in acute hippocampal slices. This indicates that dissociated cultures are an adequate model for studying the properties of synaptic GABAA receptors. Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 379–388, July–August, 2004.  相似文献   

9.
During evoked release, several quanta of neurotransmitter are synchronously released in several GABA-ergic synapses. Assuming that not more than one vesicle is released at each release site, the decay of miniature and evoked IPSC (mIPSC and eIPSC, respectively) should coincide. In this study, we found that in a considerable part of the cultured hippocampal neurons eIPSC decayed more slowly than mIPSC did. We investigated the mechanisms underlying this difference using conventional electrophysiological approaches, deconvolution, simulations, and nonstationary noise analysis. Our results indicate that asynchronous release of synaptic vesicles cannot explain the prolonged decay of the GABA-ergic IPSC. We suggest that some interaction between the quanta at the pre- and/or post-synaptic level should result in a slower decay of the eIPSC in comparison with that of mIPSC.  相似文献   

10.
Synaptic activity in the central nervous system undergoes rapid state-dependent changes, requiring constant adaptation of the homeostasis between excitation and inhibition. The underlying mechanisms are, however, largely unclear. Chronic changes in network activity result in enhanced production of the inhibitory transmitter GABA, indicating that presynaptic GABA content is a variable parameter for homeostatic plasticity. Here we tested whether such changes in inhibitory transmitter content do also occur at the fast time scale required to ensure inhibition-excitation-homeostasis in dynamic cortical networks. We found that intense stimulation of afferent fibers in the CA1 region of mouse hippocampal slices yielded a rapid and lasting increase in quantal size of miniature inhibitory postsynaptic currents. This potentiation was mediated by the uptake of GABA and glutamate into presynaptic endings of inhibitory interneurons (the latter serving as precursor for the synthesis of GABA). Thus, enhanced release of inhibitory and excitatory transmitters from active networks leads to enhanced presynaptic GABA content. Thereby, inhibitory efficacy follows local neuronal activity, constituting a negative feedback loop and providing a mechanism for rapid homeostatic scaling in cortical circuits.  相似文献   

11.
Presynaptic inhibition of neurotransmitter release is thought to be mediated by a reduction of axon terminal Ca2+ current. We have compared the actions of several known inhibitors of evoked glutamate release with the actions of the Ca2+ channel antagonist Cd2+ on action potential-independent synaptic currents recorded from CA3 neurons in hippocampal slice cultures. Baclofen and adenosine decreased the frequency of miniature excitatory postsynaptic currents (mEPSCs) without affecting the distribution of their amplitudes. Cd2+ blocked evoked synaptic transmission, but had no effect on the frequency or amplitude of either mEPSCs or inhibitory postsynaptic currents (IPSCs). Inhibition of presynaptic Ca2+ current therefore appears not to be required for the inhibition of glutamate release by adenosine and baclofen. Baclofen had no effect on the frequency of miniature IPSCs, indicating that gamma-aminobutyric acid B-type receptors exert distinct presynaptic actions at excitatory and inhibitory synapses.  相似文献   

12.
Cerebellar Purkinje neurons maintain high firing rates but their synaptic terminals depress only moderately, raising the question of how vesicle depletion is minimized. To identify mechanisms that limit synaptic depression, we evoked 100 Hz trains of GABAergic inhibitory postsynaptic currents (IPSCs) in cerebellar nuclear neurons by stimulating Purkinje axons in mouse brain slices. The paired-pulse ratio (IPSC(2)/IPSC(1)) of the total IPSC was approximately 1 and the steady-state ratio (IPSC(20)/IPSC(1)) was approximately 0.5, suggesting a high response probability of postsynaptic receptors, without an unusually high release probability. Three-dimensional electron microscopic reconstructions of Purkinje boutons revealed multiple active zones without intervening transporters, suggestive of "spillover"-mediated transmission. Simulations of boutons with 10-16 release sites, in which transmitter from any site can reach all receptors opposite the bouton, replicated multiple-pulse depression during normal, high, and low presynaptic Ca influx. These results suggest that release from multiple-site boutons limits depletion-based depression, permitting prolonged, high-frequency inhibition at corticonuclear synapses.  相似文献   

13.
The effects of blockers of voltage-gated potassium channels, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), on inhibitory postsynaptic currents (IPSC) evoked by local electrical stimulation of zones of unitary synaptic terminals on hippocampal neurons were studied using a voltage-clamp technique under conditions of low density cell culture. At activation of the transmitter release in the absence of action potentials (when the terminals are in a tetrodotoxin-containing medium), external application of 5 mM 4-AP reversibly increased the averaged IPSC amplitude by 90±30%, while a similar effect of 10 mM TEA reached only 20±7%. The amplitudes of individual evoked IPSC varied between 10 and more than 150 pA. Amplitude histograms of IPSC in all studied neurons (n=14) were of a polymodal nature and could not described by a Gaussian law. An increase in the averaged IPSC amplitude under the influence of potassium channel blockers cannot be described as resulting only from modification of the number of trials without transmitter release (blank events). The mechanism of potassium channel blocker-induced facilitation of IPSC evoked by single synaptic terminals is discussed.  相似文献   

14.
Effect of nifedipine on inhibitory postsynaptic currents (IPSC) was studied in cultured hippocampal neurons. Nifedipine, if used in low concentrations, caused no essential changes in the IPSC amplitude. If used in high concentrations (50 or 100 μM), this calcium channel blocker reduced the IPSC amplitude, on the average, by 35 and 42%, respectively. The calcium current component sensitive to nifedipine at high concentrations was found to be insensitive to the agents, which block calcium channels of N- and P/Q types. It is concluded that the L-type calcium channels sensitive to nifedipine in low concentrations are absent in the presynaptic membrane of inhibitory synapses, whereas the only component of calcium current sensitive to this blocking agent in a high concentration, as well as the ω-CTx-GVIA- and ω-Aga-IVA-sensitive components of this current, participate in the transmission of inhibitory synaptic influences on the neurons studied.  相似文献   

15.
Li CY  Lu JT  Wu CP  Duan SM  Poo MM 《Neuron》2004,41(2):257-268
Correlated pre- and postsynaptic activity that induces long-term potentiation is known to induce a persistent enhancement of the intrinsic excitability of the presynaptic neuron. Here we report that, associated with the induction of long-term depression in hippocampal cultures and in somatosensory cortical slices, there is also a persistent reduction in the excitability of the presynaptic neuron. This reduction requires postsynaptic Ca(2+) elevation and presynaptic PKA- and PKC-dependent modification of slow-inactivating K(+) channels. The bidirectional changes in neuronal excitability and synaptic efficacy exhibit identical requirements for the temporal order of pre- and postsynaptic activation but reflect two distinct aspects of activity-induced modification of neural circuits.  相似文献   

16.
Evolutionarily conserved homeostatic systems have been shown to modulate synaptic efficiency at the neuromuscular junctions of organisms. While advances have been made in identifying molecules that function presynaptically during homeostasis, limited information is currently available on how postsynaptic alterations affect presynaptic function. We previously identified a role for postsynaptic Dystrophin in the maintenance of evoked neurotransmitter release. We herein demonstrated that Dystrobrevin, a member of the Dystrophin Glycoprotein Complex, was delocalized from the postsynaptic region in the absence of Dystrophin. A newly-generated Dystrobrevin mutant showed elevated evoked neurotransmitter release, increased bouton numbers, and a readily releasable pool of synaptic vesicles without changes in the function or numbers of postsynaptic glutamate receptors. In addition, we provide evidence to show that the highly conserved Cdc42 Rho GTPase plays a key role in the postsynaptic Dystrophin/Dystrobrevin pathway for synaptic homeostasis. The present results give novel insights into the synaptic deficits underlying Duchenne Muscular Dystrophy affected by a dysfunctional Dystrophin Glycoprotein complex.  相似文献   

17.
Heparan sulfates (HSs) are complex and highly active molecules that are required for synaptogenesis and long-term potentiation. A deficit in HSs leads to autistic phenotype in mice. Here, we investigated the long-term effect of heparinase I, which digests highly sulfated HSs, on the spontaneous bioelectrical activity of neuronal networks in developing primary hippocampal cultures. We found that chronic heparinase treatment led to a significant reduction of the mean firing rate of neurons, particularly during the period of maximal neuronal activity. Furthermore, firing pattern in heparinase-treated cultures often appeared as epileptiform bursts, with long periods of inactivity between them. These changes in network activity were accompanied by an increase in the frequency and amplitude of miniature postsynaptic excitatory currents, which could be described by a linear up-scaling of current amplitudes. Biochemically, we observed an upregulation in the expression of the glutamate receptor subunit GluA1, but not GluA2, and a strong increase in autophosphorylation of α and β Ca2+/calmodulin-dependent protein kinase II (CaMKII), without changes in the levels of kinase expression. These data suggest that a deficit in HSs triggers homeostatic synaptic plasticity and drastically affects functional maturation of neural network.  相似文献   

18.
Studies performed on low-density primary neuronal cultures have enabled dissection of molecular and cellular changes during N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). Various electrophysiological and chemical induction protocols were developed for the persistent enhancement of excitatory synaptic transmission in hippocampal neuronal cultures. The characterisation of these plasticity models confirmed that they share many key properties with the LTP of CA1 neurons, extensively studied in hippocampal slices using electrophysiological techniques. For example, LTP in dissociated hippocampal neuronal cultures is also dependent on Ca(2+) influx through post-synaptic NMDA receptors, subsequent activation and autophosphorylation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and an increase in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor insertion at the post-synaptic membrane. The availability of models of LTP in cultured hippocampal neurons significantly facilitated the monitoring of changes in endogenous postsynaptic receptor proteins and the investigation of the associated signalling mechanisms that underlie LTP. A central feature of LTP of excitatory synapses is the recruitment of AMPA receptors at the postsynaptic site. Results from the use of cell culture-based models started to establish the mechanism by which synaptic input controls a neuron's ability to modify its synapses in LTP. This review focuses on key features of various LTP induction protocols in dissociated hippocampal neuronal cultures and the applications of these plasticity models for the investigation of activity-induced changes in native AMPA receptors.  相似文献   

19.
In cultured pyramidal neurons of the rat brain cortex, we recorded (in the whole-cell configuration) postsynaptic currents (PSC) evoked by direct electrical microstimulation of an axon of the interneuron adjacent to the pyramidal cell. Application of 5 M bicuculline rapidly, entirely, and reversibly blocked these currents. Linear changes in the holding potential on the membrane of the postsynaptic cell resulted in linear changes in the amplitude of averaged currents. The currents underwent reversion when the holding potential was –16 mV, which was close to the reversal potential for Cl- ions at their respective concentrations in the extra- and intracellular solutions. We conclude that the recorded currents are inhibitory PSC (IPSC) mediated by GABA release. The amplitudes of the recorded currents varied from a measurable minimum (8 pA) to more than 150 pA at a holding potential on the postsynaptic cell membrane of –80 mV. Times to peak of the high- and low-amplitude currents showed no significant differences, being about 6.4 msec on average. Decays of the current could be satisfactorily approximated by a monoexponential function with a mean time constant of 17 msec. The time constants of IPSC decay were distributed accordingly to the Gaussian law. In some cases, the amplitude distributions of IPSC were unimodal ((with a rightward asymmetry), but in most cases they were clearly polymodal. The amplitude distribution can be described by the sum of several Gaussian distributions; the distance between modes of the Gaussians was 25 ± 6 pA, on average. The obtained estimates of the amplitude of monoquantal GABA-induced IPSC in neurons of the brain cortex allow us to conclude that in various CNS regions the dimension of the vesicles in GABA-ergic synapses formed by inhibitory interneurons is identical.  相似文献   

20.
Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3‐phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2‐mediated hyperactivation of Cdk5 downstream of receptor‐ and activity‐dependent calcium influx. Our results unravel an unexpected function for PI(3)P‐containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P‐producing VPS34 kinase in neurological disease and neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号