首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies.  相似文献   

2.
The endoplasmic reticulum (ER) is the primary cellular compartment where proteins are synthesized and modified before they can be transported to their destination. Dysfunction of the ER impairs protein homeostasis and leads to the accumulation of misfolded/unfolded proteins in the ER, or ER stress. While it has long been recognized that ER stress is a major cause of conformational disorders, such as Alzheimer's disease, Huntington's disease, certain types of cancer, and type 2 diabetes, recent evidence suggests that ER stress is also implicated in many chronic inflammatory diseases. These diseases include irritable bowel syndrome, atherosclerosis, diabetic complications, and many others. Diabetic retinopathy is a common microvascular complication of diabetes, characterized by chronic inflammation, progressive damage to retinal vascular and neuronal cells, vascular leakage, and abnormal blood vessel growth (neovascularization). In this review, we discuss the role and mechanisms of ER stress in retinal inflammation and vascular damage in diabetic retinopathy.  相似文献   

3.
Missense mutations in the proteolipid protein 1 (PLP1) gene cause a wide spectrum of hypomyelinating disorders, from mild spastic paraplegia type 2 to severe Pelizaeus-Merzbacher disease (PMD). Mutant PLP1 accumulates in the endoplasmic reticulum (ER) and induces ER stress. However, the link between the clinical severity of PMD and the cellular response induced by mutant PLP1 remains largely unknown. Accumulation of misfolded proteins in the ER generally leads to up-regulation of ER chaperones to alleviate ER stress. Here, we found that expression of the PLP1-A243V mutant, which causes severe disease, depletes some ER chaperones with a KDEL (Lys-Asp-Glu-Leu) motif, in HeLa cells, MO3.13 oligodendrocytic cells, and primary oligodendrocytes. The same PLP1 mutant also induces fragmentation of the Golgi apparatus (GA). These organelle changes are less prominent in cells with milder disease-associated PLP1 mutants. Similar changes are also observed in cells expressing another disease-causing gene that triggers ER stress, as well as in cells treated with brefeldin A, which induces ER stress and GA fragmentation by inhibiting GA to ER trafficking. We also found that mutant PLP1 disturbs localization of the KDEL receptor, which transports the chaperones with the KDEL motif from the GA to the ER. These data show that PLP1 mutants inhibit GA to ER trafficking, which reduces the supply of ER chaperones and induces GA fragmentation. We propose that depletion of ER chaperones and GA fragmentation induced by mutant misfolded proteins contribute to the pathogenesis of inherited ER stress-related diseases and affect the disease severity.  相似文献   

4.
内质网(endoplasmic reticulum,ER)广泛存在于真核细胞中,是负责细胞中分泌性蛋白合成和折叠的细胞器。20世纪70年代开始发现了许多干扰内质网功能的因素可直接或间接使内质网中未折叠的蛋白质堆积,使细胞处于应激状态(ER stress),细胞通过未折叠蛋白质反应(unfolded protein response,UPR)来适应内质网应激。未折叠蛋白质反应途径(UPR pathway)是一种信号转导途径,最早在酵母中阐明。近年来对哺乳动物细胞未折叠蛋白质反应途径的研究也获得了重要成果。毒性、缺氧、病毒感染等不良刺激可使细胞内环境的稳态受到破坏,诱发一系列内质网应激反应(ER stress)来维持细胞的正常功能。当细胞受到持续而强烈的刺激时,不能缓解内质网应激状态,细胞会走向凋亡。近年来的研究发现,CHOP/GADD153作为一种前凋亡分子,在内质网应激介导的细胞凋亡中发挥着重要作用,参与肿瘤、阿尔茨海默、糖尿病等诸多疾病的发生和发展过程。  相似文献   

5.
The endoplasmic reticulum (ER) is a small intracellular organelle to which one-third of cellular proteins are translocated after translation and post-translational modification, folding and the formation of a three- or four-dimensional structure. ER also has a role in the transportation of proteins to other intracellular organelles, the cell surface or the outer space of the cell membrane. Thus, ER is an important intermediate which maintains intracellular homeostasis through complex control systems. Once these control systems are disrupted, serious disturbances occur. Many neurodegenerative diseases including Parkinson's disease involve aggregation and deposition of misfolded proteins such as alpha-synuclein. Endogenously occurring neurotoxins such as Salsolinol and 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) causing Parkinsonism may foster misfolded proteins and bring forth ER stress in dopaminergic neurons. In the present study we examined translational changes fostered by ER stress and mediated by the Parkinsonian endogenous neurotoxins, salsolinol and 1BnTIQ, in dopaminergic cell line. Treatment with salsolinol and 1BnTIQ induced several genes involved in ER stress and unfolded protein response (UPR), such as ER chaperones and GADD153 (CHOP). Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinase PERK (PKR-like-ER kinase) and eIF2alpha and induction of their downstream targets such as Bip and GADD153. These findings suggest a widespread involvement of ER stress and unfolded protein response in the pathophysiology of Parkinson's disease.  相似文献   

6.
A variety of debilitating diseases including diabetes, Alzheimer's, Huntington's, Parkinson's, and prion-based diseases are linked to stress within the endoplasmic reticulum (ER). Using S. cerevisiae, we sought to determine the relationship between protein misfolding, ER stress, and cell death. In the absence of ERV29, a stress-induced gene required for ER associated degradation (ERAD), misfolded proteins accumulate in the ER leading to persistent ER stress and subsequent cell death. Cells alleviate ER stress through the unfolded protein response (UPR); however, if stress is sustained the UPR contributes to cell death by causing the accumulation of reactive oxygen species (ROS). ROS are generated from two sources: the UPR-regulated oxidative folding machinery in the ER and mitochondria. Our results demonstrate a direct mechanism(s) by which misfolded proteins lead to cellular damage and death.  相似文献   

7.
Coupling endoplasmic reticulum stress to the cell death program   总被引:17,自引:0,他引:17  
The endoplasmic reticulum (ER) regulates protein synthesis, protein folding and trafficking, cellular responses to stress and intracellular calcium (Ca(2+)) levels. Alterations in Ca(2+) homeostasis and accumulation of misfolded proteins in the ER cause ER stress that ultimately leads to apoptosis. Prolonged ER stress is linked to the pathogenesis of several different neurodegenerative disorders. Apoptosis is a form of cell death that involves the concerted action of a number of intracellular signaling pathways including members of the caspase family of cysteine proteases. The two main apoptotic pathways, the death receptor ('extrinsic') and mitochondrial ('intrinsic') pathways, are activated by caspase-8 and -9, respectively, both of which are found in the cytoplasm. Recent studies point to the ER as a third subcellular compartment implicated in apoptotic execution. Here, we review evidence for the contribution of various cellular molecules that contribute to ER stress and subsequent cellular death. It is hoped that dissection of the molecular components and pathways that alter ER structure and function and ultimately promote cellular death will provide a framework for understanding degenerative disorders that feature misfolded proteins.  相似文献   

8.
9.
Several neurodegenerative diseases share common neuropathology, primarily featuring the presence in the brain of abnormal protein inclusions containing specific misfolded proteins. Recent evidence indicates that alteration in organelle function is a common pathological feature of protein misfolding disorders, highlighting perturbations in the homeostasis of the endoplasmic reticulum (ER). Signs of ER stress have been detected in most experimental models of neurological disorders and more recently in brain samples from human patients with neurodegenerative disease. To cope with ER stress, cells activate an integrated signaling response termed the unfolded protein response (UPR), which aims to reestablish homeostasis in part through regulation of genes involved in protein folding, quality control and degradation pathways. Here we discuss the particular mechanisms currently proposed to be involved in the generation of protein folding stress in different neurodegenerative conditions and speculate about possible therapeutic interventions.  相似文献   

10.
A central function of the endoplasmic reticulum (ER) is to coordinate protein biosynthetic and secretory activities in the cell. Alterations in ER homeostasis cause accumulation of misfolded/unfolded proteins in the ER. To maintain ER homeostasis, eukaryotic cells have evolved the unfolded protein response (UPR), an essential adaptive intracellular signaling pathway that responds to metabolic, oxidative stress, and inflammatory response pathways. The UPR has been implicated in a variety of diseases including metabolic disease, neurodegenerative disease, inflammatory disease, and cancer. Signaling components of the UPR are emerging as potential targets for intervention and treatment of human disease.  相似文献   

11.
Endoplasmic reticulum (ER) stress occurs when the protein folding machinery in the cell is unable to cope with newly synthesized proteins, which results in an accumulation of misfolded proteins in the ER lumen. In response, the cell activates a cellular signaling pathway known as the Unfolded Protein Response (UPR), aiming to restore cellular homeostasis. Activation and exacerbation of the UPR have been described in several human pathologies, including cancer and neurological disorders, and in some gestational diseases such as preeclampsia and gestational diabetes. This review explores the participation of stromal cell-derived factor 2 (SDF2) in UPR pathways, shows new information and discusses its exacerbation regarding protein expression in severe preeclampsia and labor, both of which are associated with ER stress.  相似文献   

12.
Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate‐intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN‐1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin‐like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI‐induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post‐MI heart failure rats. These results reinforce the importance of AET as primary non‐pharmacological therapy to cardiovascular disease.  相似文献   

13.
14.
15.
Protein quality control in the endoplasmic reticulum   总被引:1,自引:0,他引:1  
Protein folding and quality control in the endoplasmic reticulum (ER) are synchronized mechanisms ensuring that only properly folded proteins are integrated in the plasma membrane or secreted from the cell. These mechanisms act in close collaboration with the molecular machinery involved in retrograde-translocation and degradation of non-native proteins and with the ER-stress activated signalling systems. The common goal of these mechanisms is to prevent expression and secretion of misfolded proteins. Protein misfolding can be detrimental to the cell and contributes to the disease mechanism in several inherited disorders, e.g. cystic fibrosis, familial hypercholesterolemia and diabetes insipidus. This review outlines the molecular mechanisms in protein quality control occurring in the ER, signalling caused by ER stress, and finally ER associated protein degradation.  相似文献   

16.
The endoplasmic reticulum (ER) is a subcellular organelle that ensures proper protein folding process. The ER stress is defined as cellular conditions that disturb the ER homeostasis, resulting in accumulation of unfolded and/or misfolded proteins in the lumen of the ER. The presence of these proteins within the ER activates the ER stress response, known as unfolded protein response (UPR), to restore normal functions of the ER. However, under the severe and/or prolonged ER stress, UPR initiates apoptotic cell death. Psychostimulants such as cocaine, amphetamine, and methamphetamine cause the ER stress and/or apoptotic cell death in regions of the brain related to drug addiction. Recent studies have shown that the ER stress in response to psychostimulants is linked to behavioral sensitization and that the psychostimulant-induced ER stress signaling cascades are closely associated with the pathogenesis of the neurodegenerative diseases. Therefore, this review was conducted to improve understanding of the functional role of the ER stress in the addiction as well as neurodegenerative diseases. This would be helpful to facilitate development of new therapeutic strategies for the drug addiction and/or neurodegenerative diseases caused or exacerbated by exposure to psychostimulants.  相似文献   

17.
18.
A hallmark event in neurodegenerative diseases is the accumulation of misfolded aggregated proteins in the brain leading to neuronal dysfunction and disease. Compelling evidence suggests that misfolded proteins damage cells by inducing endoplasmic reticulum (ER) stress and alterations in calcium homeostasis. Changes in cytoplasmic calcium concentration lead to unbalances on several signaling pathways. Recent data suggest that calcium-mediated hyperactivation of calcineurin (CaN), a key phosphatase in the brain, triggers synaptic dysfunction and neuronal death, the two central events responsible for brain degeneration in neurodegenerative diseases. Therefore, blocking CaN hyper-activation might be a promising therapeutic strategy to prevent brain damage in neurodegenerative diseases.  相似文献   

19.
The unfolded protein response (UPR) has evolved to counter the stresses that occur in the endoplasmic reticulum (ER) as a result of misfolded proteins. This sophisticated quality control system attempts to restore homeostasis through the action of a number of different pathways that are coordinated in the first instance by the ER stress-senor proteins IRE1, ATF6 and PERK. However, prolonged ER-stress-related UPR can have detrimental effects on cell function and, in the longer term, may induce apoptosis. Connective tissue cells such as fibroblasts, osteoblasts and chondrocytes synthesise and secrete large quantities of proteins and mutations in many of these gene products give rise to heritable disorders of connective tissues. Until recently, these mutant gene products were thought to exert their effect through the assembly of a defective extracellular matrix that ultimately disrupted tissue structure and function. However, it is now becoming clear that ER stress and UPR, because of the expression of a mutant gene product, is not only a feature of, but may be a key mediator in the initiation and progression of a whole range of different connective tissue diseases. This review focuses on ER stress and the UPR that characterises an increasing number of connective tissue diseases and highlights novel therapeutic opportunities that may arise.  相似文献   

20.
The ER's capacity to process proteins is limited, and stress caused by accumulation of unfolded and misfolded proteins (ER stress) contributes to human disease. ER stress elicits the unfolded protein response (UPR), whose components attenuate protein synthesis, increase folding capacity, and enhance misfolded protein degradation. Here, we report that P58(IPK)/DNAJC3, a UPR-responsive gene previously implicated in translational control, encodes a cytosolic cochaperone that associates with the ER protein translocation channel Sec61. P58(IPK) recruits HSP70 chaperones to the cytosolic face of Sec61 and can be crosslinked to proteins entering the ER that are delayed at the translocon. Proteasome-mediated cytosolic degradation of translocating proteins delayed at Sec61 is cochaperone dependent. In P58(IPK-/-) mice, cells with a high secretory burden are markedly compromised in their ability to cope with ER stress. Thus, P58(IPK) is a key mediator of cotranslocational ER protein degradation, and this process likely contributes to ER homeostasis in stressed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号