首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gossypol is a polyphenolic pigment, which is employed as a male antifertility drug. It inhibits, among other reported effects, the growth of cultured mammalian cells, spermiogenesis, flagellar motility in Trypanosoma and sperm, dynein ATPase and the lactate dehydrogenase X (LDH-X) isozyme. We have characterized the non-covalent binding of gossypol to purified calf brain tubulin in 10 mM phosphate buffer, 0.1 mM GTP pH 7.0 at 25 degrees C. Equilibrium measurements were performed by difference spectroscopy. A peak at 435 nm was produced by the perturbation of gossypol light absorption upon binding to tubulin. The experimental isotherm was fitted by 1.96 +/- 0.06 gossypol binding sites per tubulin molecule, with identical apparent equilibrium binding constants of (7.5 +/- 1.1) X 10(4) M-1. The complex formed could be separated from free gossypol by gel chromatography. Binding of gossypol was independent of the presence of 0.1 mM GTP in the buffer. Gossypol did not affect the binding of ligands to the colchicine site. Gossypol interacted with vinblastine but apparently did not bind to the vinblastine sites of tubulin. Gossypol did not displace anilinonaphthalene sulphonate (ANS) bound to tubulin, but caused a strong (fivefold) quenching of its fluorescence. This indicated that gossypol probably binds in the vicinity of the ANS site of tubulin. Gossypol inhibited in vitro microtubule assembly at the same concentration range employed in the binding studies. An increase in the critical protein concentration required for polymerisation was observed, most simply interpreted by a stoichiometric mechanism. Gossypol did not induce any noticeable distortion of the microtubules observed under the electron microscope. This compound constitutes a new tubulin ligand and an inhibitor of microtubule assembly in vitro.  相似文献   

2.
Tau, a microtubule-associated protein which copurifies with tubulin through successive cycles of polymerization and depolymerization, has been isolated from tubulin by phosphocellulose chromatography and purified to near homogeneity. The purified protein is seen to migrate during electrophoresis on acrylamide gels as four closely spaced bands of apparent molecular weights between 55,000 and 62,000. Specific activity for induction of microtubule formation from purified tubulin has been assayed by quantitative electron microscopy and is seen to be enhanced three- to fourfold in the purified tau when compared with the unfractionated microtubule-associated proteins. Nearly 90% of available tubulin at 1 mg/ml is found to be polymerizable into microtubules with elevated levels of tau. Moreover, the critical concentration for polymerization of the reconstituted tau + tubulin system is seen to be a function of tau concentration and may be lowered to as little as 30 μg of tubulin per ml. Under depolymerizing conditions, 50% of the tubulin at only 1 mg/ml may be driven into ring structures. A separate purification procedure for isolation of tau directly from cell extracts has been developed and data from this purification suggest that tau is present in the extract in roughly the same proportion to tubulin as is found in microtubules purified by cycles of assembly and disassembly. Tau is sufficient for both nucleation and elongation of microtubules from purified tubulin and hence the reconstituted tau + tubulin system defines a complete microtubule assembly system under standard buffer conditions. In an accompanying paper (Cleveland et al., 1977) the physical and chemical properties of tau are discussed and a model by which tau may function in microtubule assembly is presented.  相似文献   

3.
Tulub AA 《Biofizika》2005,50(1):62-68
Quantum chemistry calculations [DFT-B3LYP QM/MM method, 6-31G** basis set, + ab initio molecular dynamics] were used to study the action of Mg2+ on tubulin properties. It was shown that the hydration of the guanosine triphosphate-tubulin forms a protein zone structure, which includes a electron-occupied zone and a conductivity zone. The binding of Mg2+ to guanosine triphosphate-tubulin results in the unpairing of electrons in the occupied zone (triplet state formation) followed by their transition to the conductivity zone in which the inversion of spin occurs (singlet state formation). The formation of triplet state is the initial step in the subsequent protein dynamics in the picosecond range of time. The dynamics shows up as a coherent oscillating transition of tubulin between the triplet and singlet states, which is evidence of a simultaneous adjustment between nuclear and electron configurations of the protein (ab initio molecular dynamics calculations). The barrier between the triplet and singlet states does not exceed 0.60 kcal x mol(-1). The barrier overcome is considered as electron tunneling through the Fermi surface, which separates the occupied and conductivity zones. Zone formation occurs in the presence of the shell of biological water surrounding the protein.  相似文献   

4.
Numerous isotypes of the structural protein tubulin have now been characterized in various organisms and their expression offers a plausible explanation for observed differences affecting microtubule function in vivo. While this is an attractive hypothesis, there are only a handful of studies demonstrating a direct influence of tubulin isotype composition on the dynamic properties of microtubules. Here, we present the results of experimental assays on the assembly of microtubules from bovine brain tubulin using purified isotypes at various controlled relative concentrations. A novel data analysis is developed using recursive maps which are shown to be related to the master equation formalism. We have found striking similarities between the three isotypes of bovine tubulin studied in regard to their dynamic instability properties, except for subtle differences in their catastrophe frequencies. When mixtures of tubulin isotypes are analyzed, their nonlinear concentration dependence is modeled and interpreted in terms of lower affinities of tubulin dimers belonging to the same isotype than those that represent different isotypes indicating hitherto unsuspected influences of tubulin dimers on each other within a microtubule. Finally, we investigate the fluctuations in microtubule assembly and disassembly rates and conclude that the inherent rate variability may signify differences in the guanosine-5′-triphosphate composition of the growing and shortening microtubule tips. It is the main objective of this article to develop a quantitative model of tubulin polymerization for individual isotypes and their mixtures. The possible biological significance of the observed differences is addressed.  相似文献   

5.
Tubulin in high-speed supernatants of brain undergoes an alternate form of polymerization into structures that resemble membranes rather than microtubules. The reaction required elevated temperature (37°C) and was prevented by 1mM CaCl2 or 10?4 M maytansine. The membraneous material was composed of tubulin (80%) and microtubule-associated proteins (8%) and contained phospholipids. The tubulin was identified on the basis of comigration in two-dimensional gel electrophoresis and colchicine-binding activity.  相似文献   

6.
Despite numerous studies considering DNA as a primary target of cisplatin attack, this work is the first to show the pure effect of cisplatin on the process of tubulin assembly/disassembly in vitro. When platinated, tubulin does not assemble into microtubules (direct electron microscopic studies). In place of them, highly stable and inert circled rings arise. Such tubulin aggregates are unable to participate in the process of chromosome separation during the mitosis, thus blocking cell division in living cells, which is a direct evidence of cisplatin antitumor activity. Cisplatin attack on tubulin causing blockage of tubulin assembly occurs via a two-step binding to GTP in the GTP center of tubulin ((195)Pt, (31)P NMR studies). The calculated binding rates are close to those reported in cisplatin-DNA interactions. The mechanism of cisplatin attack on tubulin is proposed.  相似文献   

7.
The 4-kDa C-terminal domain of both tubulin subunits plays a major role in the regulation of microtubule assembly [Serrano et al. (1984) Biochemistry 23, 4675]. Controlled proteolysis of tubulin with subtilisin produces the selective cleavage of this 4-kDa moiety from alpha- and beta-tubulin with a concomitant enhancement of the assembly. Here we show that gradual removal of the last six to eight amino acid residues of the C-terminal region of alpha and beta subunits by an exopeptidase, carboxypeptidase Y, produces a modified protein (C-tubulin) without relieving the modulatory effect of the C-terminal domain and the usual need of MAPs for microtubule assembly. Actually, treatment with this proteolytic enzyme did not change tubulin assembly as promoted by either MAP-2, taxol, MgCl2, dimethyl sulfoxide, or glycerol. The critical concentration for the assembly of C-tubulin remained the same as that for the unmodified tubulin control. Microtubule-associated proteins MAP-2 and tau incorporated into C-tubulin polymers. Clearly, pure C-tubulin did not assemble in the absence of MAPs or without addition of assembly-promoting compounds. However, proteolysis with the exopeptidase induced changes in tubulin conformation as assessed by biophysical methods and double-limited proteolysis. The cleavage with subtilisin after carboxypeptidase digestion did not result in enhancement of the assembly to the levels observed after the treatment of native tubulin with subtilisin. Interestingly, Ca2+ ions affected neither C-tubulin assembly nor depolymerized microtubules assembled from C-tubulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Sodium-orthovanadate (100-700 microM) added to purified pig brain microtubule protein (molar ratios 13-90 moles vanadate/mole tubulin) inhibits to a considerable extent the assembly (up to 65%) and the disassembly rates (up to 60%) of microtubules, as determined by turbidimetry. Vanadate added to preformed microtubules did not appreciably alter the turbidity level of the samples, however, the disassembly rates were decreased in the same manner as when vanadate was added prior to polymerization. Microtubule protein kept on ice for 3-6 hours became more susceptible to vanadate than freshly prepared protein. The effect of vanadate was independent of the GTP concentration at which the polymerization assays were performed (0.025 to 1 mM GTP). In the presence of taxol, which increases the rate and extent of microtubule formation, vanadate had no effect on assembly rates. Disassembly was inhibited, however, much less than in the presence of vanadate alone. Electron microscopy and polyacrylamide gel electrophoresis did not reveal differences between microtubules prepared in the presence or in the absence of vanadate. This is consistent with the notion that vanadate does not interfere with the interaction between tubulin and the high-molecular weight microtubule-associated proteins. Apparently vanadate brings about an allosteric change of the microtubule protein(s) resulting in the abnormal polymerization kinetics of tubulin found in our study. The above results may be relevant for studies where the effects of vanadate on intracellular motility are interpreted as being solely due to a specific inhibition of ATPases.  相似文献   

9.
10.
11.
Crude dynein extracted from bull sperm flagella polymerized pure phosphocellulose tubulin isolated from brain tissues into microtubules. This effect was predominantly due to the 19S dynein particle in the extract. ATP stimulated up to five fold the polymerization of brain tubulin by bull sperm dynein. Hydrolysis of ATP was not required since vanadate at a concentration sufficient to block dynein ATPase activity did not interfere with ATP stimulation and because the non hydrolyzable ATP analogue adenylyl (beta-gamma-methylene) diphosphate (AMPPCP) had effects similar to those of ATP. These results suggest that, in addition to hydrolyzing ATP to generate the driving force necessary for microtubule sliding within the axoneme, dynein may also interact with ATP to polymerize tubulin into microtubules.  相似文献   

12.
Estramustine phosphate, an estradiol nitrogen-mustard derivative is a microtubule-associated protein (MAP)-binding microtubule inhibitor, used in the therapy of prostatic carcinoma. It was found to inhibit assembly and to induce disassembly of microtubules reconstituted from phosphocellulose-purified tubulin with either tau, microtubule-associated protein 2, or chymotrypsin-digested microtubule-associated protein 2. Estramustine phosphate also inhibited assembly of trypsin-treated microtubules, completely depleted of high-molecular-weight microtubule-associated proteins, but with their microtubule-binding fragment present. In all cases estramustine phosphate induced disassembly to about 50%, at a concentration of approximately 100 microM, at similar protein concentrations. However, estramustine phosphate did not affect dimethyl sulfoxide-induced assembly of phosphocellulose-purified tubulin. Estramustine phosphate is a reversible inhibitor, as the nonionic detergent Triton X-100 was found to counteract the inhibition in a concentration-dependent manner. The reversibility was nondisruptive, as Triton X-100 itself did not affect microtubule assembly, microtubule protein composition, or morphology. This new reversible MAPs-dependent inhibitor estramustine phosphate affects the tubulin assembly, induced by tau, as well as by the small tubulin-binding part of MAP2 with the same concentration dependency. This indicates that tau and the tubulin-binding part of MAP2, in addition to their assembly promoting functions also have binding site(s) for estramustine phosphate in common.  相似文献   

13.
B(alpha beta) tubulin was obtained from a homogeneous class of microtubules, the incomplete B subfiber of sea urchin sperm flagellar doublet microtubules, by thermal fractionation. The thermally derived soluble B tubulin fraction (100, 000 g-h) repolymerizes in vitro, yielding microtubule-like structures. The microtubule-associated protein (MAP) composition and certain assembly parameters of thermally derived B tubulin are different from those reported for sonication- derived flageller tubulin and purified vertebrate tubulin. The "microtubules" reassembled from thermally prepared B tubulin are composed of 12-15 protofilaments (73% possess 14 protofilaments). A certain number possess a single "adlumenal component" applied to their inside walls, regardless of the number of protofilaments. Following the first cycle of polymerization, 81% of the B tubulin and essentially 100% of the MAPs remain cold insoluble. Evidence suggests that B tubulin assembles faithfully into a B lattice, creating a j seam between two protofilaments that are laterally bonded in a A-lattice configuration. The significance of these seams is discussed in relation to the mechanism of microtubule assembly, the stability of observed ribbons of protofilaments, and the three-dimensional organization of microtubule-associated components.  相似文献   

14.
Three new solvates [mono-dimethyl sulfoxide (mono-DMSO), mono-dimethyl acetamide (mono-DMA) and mono-dimethyl formamide (mono-DMF)] of 10-Deacetyl baccatin III, were generated by slow evaporation in DMSO, DMF, and DMSO/DMA (1:1) solvent systems respectively. Two concomitant forms mono-DMSO(a new form) and di-DMSO (a known form) were obtained in the DMSO solvent system. Yet two other concomitant forms mono-DMA (a new form) and di-DMSO (a known form) were obtained in DMSO/DMA (1:1) solvent system. A fourth solvate mono-DMF (a new form) was crystallized in unimolar ratio using DMF as a solvent. These solvates were characterized using powder X-ray diffraction, differential scanning calorimeter, thermogravimetric analysis (TGA), and spectroscopic [13C solid-state nuclear magnetic spectroscopy, solution 1H NMR, and Fourier transform infrared] techniques. The interactions between host and guest molecules were elucitated by single-crystal X-ray diffraction data. In all the cases, guest molecules are connected to the host molecules by O–H···O hydrogen bonds. A remarkable difference in the desolvation onset temperatures of di- and mono-DMSO solvates was observed which was also featured by a corresponding weight loss during TGA analysis.  相似文献   

15.
1. Significant levels of total phospholipid phosphate were detected in highly purified microtubule protein preparations. 2. While the phospholipid profiles of total microtubule proteins and microtubule-associated proteins showed both similarities and differences to that of a whole brain homogenate, purified tubulin was associated only with phospholipids that were not detectable in the latter. 3. Phosphatidyl ethanolamine, found exclusively in a fraction of microtubule associated proteins, stimulated microtubule assembly in vitro.  相似文献   

16.
About 10--20% of the total protein in the outer fiber fraction was solubilized by sonication in a solution containing 5 mM MES, 0.5 mM MgSO4, 1.0 mM EGTA, 1.0 mM GTP, and 0 or 50 mM KC1 at pH 6.7. The sonicated extract was shown by analytical centrifugation to consist largely of a 6 S component (tubulin dimer), having a molecular weight of 103,000, as determined by gel filtration, and possessing a colchicine-binding activity of 0.8 mole per tubulin dimer. The tubulin fraction failed to polymerize into microtubules by itself. Addition of a small amount of the ciliary outer fiber fragments or reconstituted short brain microtubules, however, induced polymerization, as demonstrated by viscosity of flow birefringence changes as well as light or electron microscopic observations. The growth of heterogeneous microtubules upon mixing outer fiber tubulin with DEAE-dextran-decorated brain microtubules was observed by electron microscopy. Microtubules were reconstituted from outer fiber tubulin without addition of any nuclei fraction when a concentrated tubulin fraction was warmed at 35degree. A few doublet-like microtubules or pairs of parallel singlet microtubules that were closely aligned longitudinally could be observed among many singlet microtubules. Unlike other fiber microtubules, the reconstituted polymers were depolymerized by exposure to Ca2+ ions, high or low ionic strength, colchicine, low temperature or SH reagents. No microtubules were assembled under these conditions.  相似文献   

17.
Mechanical properties of brain tubulin and microtubules   总被引:7,自引:0,他引:7       下载免费PDF全文
We measured the elasticity and viscosity of brain tubulin solutions under various conditions with a cone and plate rheometer using both oscillatory and steady shearing modes. Microtubules composed of purified tubulin, purified tubulin with taxol and 3x cycled microtubule protein from pig, cow, and chicken behaved as mechanically indistinguishable viscoelastic materials. Microtubules composed of pure tubulin and heat stable microtubule-associated proteins were also similar but did not recover their mechanical properties after shearing like other samples, even after 60 min. All of the other microtubule samples were more rigid after flow orientation, suggesting that the mechanical properties of anisotropic arrays of microtubules may be substantially greater than those of randomly arranged microtubules. These experiments confirm that MAPs do not cross link microtubules. Surprisingly, under conditions where microtubule assembly is strongly inhibited (either 5 degrees or at 37 degrees C with colchicine or Ca++) tubulin was mechanically indistinguishable from microtubules at 10-20 microM concentration. By electron microscopy and ultracentrifugation these samples were devoid of microtubules or other obvious structures. However, these mechanical data are strong evidence that tubulin will spontaneously assemble into alternate structures (aggregates) in nonpolymerizing conditions. Because unpolymerized tubulin is found in significant quantities in the cytoplasm, it may contribute significantly to the viscoelastic properties of cytoplasm, especially at low deformation rates.  相似文献   

18.
The c-Fes protein-tyrosine kinase (Fes) has been implicated in the differentiation of vascular endothelial, myeloid hematopoietic, and neuronal cells, promoting substantial morphological changes in these cell types. The mechanism by which Fes promotes morphological aspects of cellular differentiation is unknown. Using COS-7 cells as a model system, we observed that Fes strongly colocalizes with microtubules in vivo when activated via coiled-coil mutation or by coexpression with an active Src family kinase. In contrast, wild-type Fes showed a diffuse cytoplasmic localization in this system, which correlated with undetectable kinase activity. Coimmunoprecipitation and immunofluorescence microscopy showed that the N-terminal Fes/CIP4 homology (FCH) domain is involved in Fes interaction with soluble unpolymerized tubulin. However, the FCH domain was not required for colocalization with polymerized microtubules in vivo. In contrast, a functional SH2 domain was essential for microtubule localization of Fes, consistent with the strong tyrosine phosphorylation of purified tubulin by Fes in vitro. Using a microtubule nucleation assay, we observed that purified c-Fes also catalyzed extensive tubulin polymerization in vitro. Taken together, these results identify c-Fes as a regulator of the tubulin cytoskeleton that may contribute to Fes-induced morphological changes in myeloid hematopoietic and neuronal cells.  相似文献   

19.
The structure of microtubules has been characterized to 3 nm resolution employing time-resolved X-ray scattering. This has revealed detailed structural features of microtubules not observed before in solution. The polymerization of highly purified tubulin, induced by the antitumour drug taxol, has been employed as a microtubule model system. This assembly reaction requires Mg2+, is optimal at a 1:1 taxol to tubulin heterodimer molar ratio, proceeds with GTP or GDP and is intrinsically reversible. The X-ray scattering profiles are consistent with identical non-globular alpha and beta-tubulin monomers ordered within the known helical surface lattice of microtubules. Purified tubulin-taxol microtubules have a smaller mean diameter (approx. 22 nm) than those induced by microtubule associated proteins or glycerol (approx. 24 nm), but nearly identical wall substructure to the resolution of the measurements. This is because the majority of the former consist of only 12 protofilaments instead of the typical 13 protofilaments, as confirmed by electron microscopy of thin-sectioned, negatively stained and ice-embedded taxol microtubules. It may be concluded that taxol induces a slight reduction of the lateral contact curvature between tubulin monomers. The main fringe pattern observed in cryo-electron micrographs is consistent with a simple 12 protofilament 3-start skewed lattice model. Cylindrical closure of this lattice can be achieved by tilting the lattice 0.8 degrees with respect to the microtubule axis. The closure implies a discontinuity in the type of lateral contacts between the tubulin monomers (regardless of whether these are of the -alpha-beta- or the -alpha-alpha-/-beta-beta- type), which indicates that lateral contacts and the subunit specificity of taxol binding are, to a large degree, equivalent.  相似文献   

20.
Phenobarbital (PB) specifically induces mitotic chromosomal malsegregation in the diploid Saccharomyces cerevisiae strain D61.M but no other genetic events such as mitotic recombination or point mutations. In accordance with the hypothesis that PB exerts its genotoxic activity by an interaction with tubulin, it stimulates the GTP-promoted assembly of porcine brain tubulin in vitro. This process is reversible thus excluding an unspecific denaturation of the tubulin protein by PB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号