首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D Sulzer  S Rayport 《Neuron》1990,5(6):797-808
Rewarding properties of psychostimulants result from reduced uptake and/or increased release of dopamine at mesolimbic synapses. As exemplified by cocaine, many psychostimulants act by binding to the dopamine uptake transporter. However, this does not explain the action of other psychostimulants, including amphetamine. As most psychostimulants are weak bases and dopamine uptake into synaptic vesicles uses an interior-acidic pH gradient, we examined the possibility that psychostimulants might inhibit acidification. Pharmacologically relevant concentrations of amphetamine as well as cocaine and phencyclidine rapidly reduced pH gradients in cultured midbrain dopaminergic neurons. To examine direct effects on vesicles, we used chromaffin granules. The three psychostimulants, as well as fenfluramine, imipramine, and tyramine, reduced the pH gradient, resulting in reduced uptake and increased release of neurotransmitter. Inhibition of acidification by psychoactive amines contributes to their pharmacology and may provide a principal molecular mechanism of action of amphetamine.  相似文献   

2.
The dopamine (DA) transporter (DAT) regulates DA neurotransmission by recycling DA back into neurons. Drugs that interfere with DAT function, e.g., cocaine and amphetamine, can have profound behavioral effects. The kinetics of DA transport by DAT in isolated synaptosomal or single cell preparations have been previously studied. To investigate how DA transport is regulated in intact tissue and to examine how amphetamine affects the DAT, the kinetics of DA uptake by the DAT were examined in tissue slices of the mouse caudate-putamen with fast-scan cyclic voltammetry. The data demonstrate that inward DA transport is saturable and sodium-dependent. Elevated levels of cytoplasmic DA resulting from disruption of vesicular storage by incubation with 10 microM Ro 4-1284 did not generate DA efflux or decrease its uptake rate. However, incubation with 10 microM amphetamine reduced the net DA uptake rate and increased extracellular DA levels due to DA efflux through the DAT. In addition, a new, elevated steady-state level of extracellular DA was established after electrically stimulated DA release in the presence of amphetamine, norepinephrine, and exogenous DA. These results from intact tissue are consistent with a kinetic model of the DAT established in more purified preparations in which amphetamine and other transported substances make the inwardly facing DAT available for outward transport of intracellular DA.  相似文献   

3.
Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study, we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine caused by phasic firing - that is, the measurement of dopamine 'transients'. These FSCV measurements revealed for the first time that spontaneous dopamine transients constitute a major component of extracellular dopamine levels in the NAc. A series of experiments were designed to probe regulation of extracellular dopamine. Lidocaine was infused into the ventral tegmental area, the site of dopamine cell bodies, to arrest neuronal firing. While there was virtually no instantaneous change in dopamine concentration, longer sampling revealed a decrease in dopamine transients and a time-averaged decrease in the extracellular level. Dopamine transporter inhibition using intravenous GBR12909 injections increased extracellular dopamine levels changing both frequency and size of dopamine transients in the NAc. To further unmask the mechanics governing extracellular dopamine levels we used intravenous injection of the vesicular monoamine transporter (VMAT2) inhibitor, tetrabenazine, to deplete dopamine storage and increase cytoplasmic dopamine in the nerve terminals. Tetrabenazine almost abolished phasic dopamine release but increased extracellular dopamine to ~500?nM, presumably by inducing reverse transport by dopamine transporter (DAT). Taken together, data presented here show that average extracellular dopamine in the NAc is low (20-30?nM) and largely arises from phasic dopamine transients.  相似文献   

4.
Amphetamine has well‐established actions on pre‐synaptic dopamine signaling, such as inhibiting uptake and degradation, activating synthesis, depleting vesicular stores, and promoting dopamine‐transporter reversal and non‐exocytotic release. Recent in vivo studies have identified an additional mechanism: augmenting vesicular release. In this study, we investigated how amphetamine elicits this effect. Our hypothesis was that amphetamine enhances vesicular dopamine release in dorsal and ventral striata by differentially targeting dopamine synthesis and degradation. In urethane‐anesthetized rats, we employed voltammetry to monitor dopamine, electrical stimulation to deplete stores or assess vesicular release and uptake, and pharmacology to isolate degradation and synthesis. While amphetamine increased electrically evoked dopamine levels, inhibited uptake, and up‐regulated vesicular release in both striatal sub‐regions in controls, this psychostimulant elicited region‐specific effects on evoked levels and vesicular release but not uptake in drug treatments. Evoked levels better correlated with vesicular release compared with uptake, supporting enhanced vesicular release as an important amphetamine mechanism. Taken together, these results suggested that amphetamine enhances vesicular release in the dorsal striatum by activating dopamine synthesis and inhibiting dopamine degradation, but targeting an alternative mechanism in the ventral striatum. Region‐distinct activation of vesicular dopamine release highlights complex cellular actions of amphetamine and may have implications for its behavioral effects.  相似文献   

5.
It was recently shown in the olfactory bulb (OB) that the response to olfactory stimulation might be related to local reinforcement mechanisms involved in discrimination of different odors. Therefore, it seemed interesting to study the effects of several drugs of abuse on the release of dopamine (DA) in the OB. Nicotine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"), and cocaine at 37 degrees C increased the release of [3H] DA from olfactory bulb slice preparations of the rats. While nicotine, amphetamine, and MDMA directly evoked DA release, cocaine, by inhibiting the reuptake processes, enhanced the electrical stimulation-evoked release. At low temperature (17 degrees C), a condition in which the transmitter uptake carriers of the plasma membrane in both the normal and reverse mode of operation are inhibited, the nicotine-evoked [3H] DA release was potentiated, whereas those evoked by amphetamine and MDMA were inhibited. At low temperature the field stimulation-evoked [3H] DA release was potentiated, but under this condition cocaine failed to increase the release. Our results show that low temperature (a) increases the concentration of extracellular DA released by Ca(2+)-dependent vesicular exocytosis elicited by nicotine, (b) inhibits the extracellular Ca(2+)-independent amphetamine- and MDMA-induced release of DA that occurs by the reverse operation of membrane carriers transporting DA from the cytoplasm of presynaptic terminals to the extraneuronal space, and (c) does not alter the inhibitory effect of cocaine on DA uptake that increases the concentration of extracellular DA released by field stimulation. The findings that the drugs of abuse tested all enhanced the release of DA in the olfactory bulb suggest that local reinforcing mechanisms may also exist in this brain area. In addition, we also show that lowering the temperature in in vitro experiments is an easy and straightforward method for separating vesicular and cytoplasmic release of transmitters, and is suitable for studying the mechanism of catecholamine release evoked by drugs of abuse. This technique may be applicable in other neurochemical studies that need inhibition of the uptake carriers without the blockade of the ligand-gated ion channels caused by reuptake inhibitor drugs.  相似文献   

6.
Lysosomotropic amines are believed to inhibit the transport of diphtheria toxin to the cell cytoplasm by raising the pH within intracellular vesicles. If so, then other drugs that dissipate intracellular proton gradients should have a similar effect on toxin transport. We found that monensin, a proton ionophore unrelated to lysosomotropic amines, is a potent inhibitor of the cytotoxic effect of diphtheria toxin. Monensin appears to block the escape of endocytosed toxin from a vesicle to the cytoplasm. Monensin fails to protect cells from the effects of diphtheria toxin that is bound to the cell surface and exposed to acidic medium, suggesting that the step normally blocked by the drug is circumvented under these conditions. The inhibition of toxin transport caused by monensin could not be relieved when monensin was replaced by ammonium chloride, nor when ammonium chloride was again replaced by monensin. This suggests that both drugs block the same step of toxin transport. The effect of monensin on the transport of diphtheria toxin to the cytoplasm is consistent with the proposal (Draper and Simon. 1980. J. Cell Biol. 87:849-854; Sandvig and Olsnes. 1980. J. Cell Biol. 87:828-832) that the toxin is endocytosed and then, in response to an acidic environment, penetrates through the membrane of an intracellular vesicle to reach the cytoplasm.  相似文献   

7.
Calcium efflux from ejaculated bovine spermatozoa occurred upon incubation in Ca2+/EGTA buffers with Ca2+ ion concentrations ranging from 0.1 microM to 1 nM. Both total cellular calcium and cytosol free Ca2+ concentrations, the latter measured with Quin 2, were inversely correlated with the Ca2+ activity of the medium. An influx of radioactive 45Ca2+ parallel to a net efflux of calcium took place in spermatozoa incubated in 45Ca2+/EGTA buffers with 45Ca2+ activity of 0.01 microM or 0.1 microM. The uptake of the radioactive isotope was higher in spermatozoa incubated at pH 7.8 than that found at pH 6.8, increased in the presence of acetate or amiloride but decreased when ammonium chloride or monensin was added to the incubation mixture. Addition of acetate produced a decrease of the cytoplasmic pH, determined with the indicator carboxyfluorescein, whereas addition of NH4Cl or monensin caused a pH increase. Addition of either nigericin or monensin to spermatozoa suspended in a choline medium containing low concentrations of Na+, K+ and Ca2+ produced a cytosolic acidification, the subsequent addition of Ca2+ caused a cytosolic alkalinization parallel to an increase of the cytosolic free Ca2+. Addition of CaCl2 to EGTA-pretreated spermatozoa resuspended in a poorly buffered medium induced an evident decrease of extracellular pH suggesting a cellular proton extrusion. Both monensin and nigericin caused an increase of the calcium transport in spermatozoa suspended in a choline medium containing a physiological concentration of 1.5 mM CaCl2. Taken together the present results indicate that, under the experimental conditions used, a delta pH-driven Ca2+ uptake occurs in ejaculated bovine spermatozoa and suggest that Ca2+ is taken up in exchange with H+.  相似文献   

8.
Vesicular sequestration is important in the regulation of cytoplasmic concentrations of monoamines such as dopamine. Moreover, recent evidence suggests that increases in cytoplasmic dopamine levels, perhaps attributable to changes in vesicular monoamine transporter function, contribute to methamphetamine-induced dopaminergic deficits. Hence, we examined whether striatal vesicular uptake is altered following methamphetamine treatment. Multiple administrations of methamphetamine rapidly (within 1 h) decreased vesicular dopamine uptake and dihydrotetrabenazine binding, an effect that (a) persisted at least 24 h, (b) was associated with dopamine and not serotonin neurons, and (c) was unrelated to residual drug introduced by the original methamphetamine treatment. These data suggest that methamphetamine rapidly decreases vesicular monoamine transporter function in dopaminergic neurons, a phenomenon that may be associated with the long-term damage caused by this stimulant.  相似文献   

9.
Abstract: Methylphenidate promotes a dose-dependent behavioral profile that is very comparable to that of amphetamine. Amphetamine increases extracellular norepinephrine and serotonin, in addition to its effects on dopamine, and these latter effects may play a role in the behavioral effects of amphetamine-like stimulants. To examine further the relative roles of dopamine, norepinephrine, and serotonin in the behavioral response to amphetamine-like stimulants, we assessed extracellular dopamine and serotonin in caudate putamen and norepinephrine in hippocampus in response to various doses of methylphenidate (10, 20, and 30 mg/kg) that produce stereotyped behaviors, and compared the results with those of a dose of amphetamine (2.5 mg/kg) that produces a level of stereotypies comparable to the intermediate dose of methylphenidate. The methylphenidate-induced changes in dopamine and its metabolites were consistent with changes induced by other uptake blockers, and the magnitude of the dopamine response for a behaviorally comparable dose was considerably less than that with amphetamine. Likewise, the dose-dependent increase in norepinephrine in response to methylphenidate was also significantly less than that with amphetamine. However, in contrast to amphetamine, methylphenidate had no effect on extracellular serotonin. These results do not support the hypothesis that a stimulant-induced increase in serotonin is necessary for the appearance of stereotyped behaviors.  相似文献   

10.
To elucidate the regulation of the rat dopamine transporter (rDAT), we established several PC12 variants overexpressing the rDAT. Treating these cells with a nicotinic agonist (1,1-dimethyl-4-phenylpiperazinium iodide, 30 microM) depolarized the plasma membrane potential from -31 +/- 2 to 43 +/- 5 mV and inhibited rDAT activity significantly in a calcium- and protein kinase C-independent manner. Membrane depolarization by a high external K+ concentration or two K+ channel blockers (tetraethylammonium hydroxide and BaCl2) also resulted in a marked inhibition of rDAT activity. Such inhibition of dopamine uptake is due to a reduction in Vmax, with no marked effect on the Km for dopamine. The potency of cocaine in inhibiting dopamine uptake was not significantly altered, whereas that of amphetamine was slightly enhanced by membrane depolarization. Removing extracellular Ca2+ or blocking the voltage-sensitive L-type calcium channels using nifedipine did not exert any significant effect on the inhibition of rDAT activity by depolarization. These data confirm that calcium influx on depolarization is not required for inhibition of the rDAT. Collectively, our data suggest that rDAT activity can be altered by a neurotransmitter that modulates the membrane potential, thus suggesting an exquisite mechanism for the fine-tuning of dopamine levels in the synapse.  相似文献   

11.
We have developed an alternating access transport model that accounts well for GAT1 (GABA:Na+:Cl-) cotransport function in Xenopus oocyte membranes. To do so, many alternative models were fitted to a database on GAT1 function, and discrepancies were analyzed. The model assumes that GAT1 exists predominantly in two states, Ein and E(out). In the Ein state, one chloride and two sodium ions can bind sequentially from the cytoplasmic side. In the Eout state, one sodium ion is occluded within the transporter, and one chloride, one sodium, and one gamma-aminobutyric acid (GABA) molecule can bind from the extracellular side. When Ein sites are empty, a transition to the Eout state opens binding sites to the outside and occludes one extracellular sodium ion. This conformational change is the major electrogenic GAT1 reaction, and it rate-limits forward transport (i.e., GABA uptake) at 0 mV. From the Eout state, one GABA can be translocated with one sodium ion to the cytoplasmic side, thereby forming the *Ein state. Thereafter, an extracellular chloride ion can be translocated and the occluded sodium ion released to the cytoplasm, which returns the transporter to the Ein state. GABA-GABA exchange can occur in the absence of extracellular chloride, but a chloride ion must be transported to complete a forward transport cycle. In the reverse transport cycle, one cytoplasmic chloride ion binds first to the Ein state, followed by two sodium ions. One chloride ion and one sodium ion are occluded together, and thereafter the second sodium ion and GABA are occluded and translocated. The weak voltage dependence of these reactions determines the slopes of outward current-voltage relations. Experimental results that are simulated accurately include (a) all current-voltage relations, (b) all substrate dependencies described to date, (c) cis-cis and cis-trans substrate interactions, (d) charge movements in the absence of transport current, (e) dependencies of charge movement kinetics on substrate concentrations, (f) pre-steady state current transients in the presence of substrates, (g) substrate-induced capacitance changes, (h) GABA-GABA exchange, and (i) the existence of inward transport current and GABA-GABA exchange in the nominal absence of extracellular chloride.  相似文献   

12.
Methylmercury (MeHg) produces significant increases in the spontaneous output of dopamine (DA) from rat striatal tissue. The mechanism through MeHg produces such increase in the extracellular DA levels could be due to increased DA release or decreased DA uptake into DA terminals. One of the aims of this study was to investigate the role of DA transporter (DAT) in the MeHg-induced DA release. Coinfusion of 400 microM MeHg and nomifensine (50 microM) or amphetamine (50 microM) produced increases in the release of DA similar to those produced by nomifensine and amphetamine alone. In the same way, MeHg-induced DA release was not attenuated under Ca(2+)-free conditions or after pretreatment with reserpine (10 mg/kg i.p.) or tetrodotoxin (TTX), suggesting that the DA release was independent of calcium and vesicular stores, as well as it was not affected by the blockade of voltage sensitive sodium channels. Thus, to investigate whether depolarization of dopaminergic terminal was able to affect MeHg-induced DA release, we infused 75 mM KCl through the dialysis membrane. Our results clearly showed a decrease induced by MeHg in the KCl-evoked DA release. Taken together, these results suggest that MeHg induces release of DA via transporter-dependent, calcium- and vesicular-independent mechanism and it decreases the KCl-evoked DA release.  相似文献   

13.
The human dopamine transporter (hDAT) contains an endogenous high affinity Zn2+ binding site with three coordinating residues on its extracellular face (His193, His375, and Glu396). Upon binding to this site, Zn2+ causes inhibition of [3H]1-methyl-4-phenylpyridinium ([3H]MPP+) uptake. We investigated the effect of Zn2+ on outward transport by superfusing hDAT-expressing HEK-293 cells preloaded with [3H]MPP+. Although Zn2+ inhibited uptake, Zn2+ facilitated [3H]MPP+ release induced by amphetamine, MPP+, or K+-induced depolarization specifically at hDAT but not at the human serotonin and the norepinephrine transporter (hNET). Mutation of the Zn2+ coordinating residue His(193) to Lys (the corresponding residue in hNET) eliminated the effect of Zn2+ on efflux. Conversely, the reciprocal mutation (K189H) conferred Zn2+ sensitivity to hNET. The intracellular [3H]MPP+ concentration was varied to generate saturation isotherms; these showed that Zn2+ increased V(max) for efflux (rather than K(M-Efflux-intracellular)). Thus, blockage of inward transport by Zn2+ is not due to a simple inhibition of the transporter turnover rate. The observations provide evidence against the model of facilitated exchange-diffusion and support the concept that inward and outward transport represent discrete operational modes of the transporter. In addition, they indicate a physiological role of Zn2+, because Zn2+ also facilitated transport reversal of DAT in rat striatal slices.  相似文献   

14.
The present study used voltammetry to ascertain whether electrically stimulated somatodendritic dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice was due to exocytosis or dopamine transporter reversal, as has been debated. The maximal concentration of electrically evoked dopamine release was similar between ventral tegmental area slices from dopamine transporter knockout and C57BL/6 mice. Dopamine transporter blockade (10 μM nomifensine) in slices from C57BL/6 mice inhibited dopamine uptake but did not alter peak evoked dopamine release. In addition, dopamine release and uptake kinetics in ventral tegmental area slices from dopamine transporter knockout mice were unaltered by the norepinephrine transporter inhibitor, desipramine (10 μM), or the serotonin transporter inhibitor, fluoxetine (10 μM). Furthermore, maximal dopamine release in ventral tegmental area slices from both C57BL/6 and dopamine transporter knockout mice was significantly decreased in response to Na+ channel blockade by 1 μM tetrototoxin, removal of Ca2+ from the perfusion media and neuronal vesicular monoamine transporter inhibition by RO-04-1284 (10 μM) or tetrabenazine (10 and 100 μM). Finally, the glutamate receptor antagonists AP-5 (50 and 100 μM) and CNQX (20 and 50 μM) had no effect on peak somatodendritic dopamine release in C57BL/6 mice. Overall, these data suggest that similar mechanisms, consistent with exocytosis, govern electrically evoked dopamine release in ventral tegmental area slices from C57BL/6 and dopamine transporter knockout mice.  相似文献   

15.
Transport mechanisms in acetylcholine and monoamine storage.   总被引:10,自引:0,他引:10  
S M Parsons 《FASEB journal》2000,14(15):2423-2434
Sequence-related vesicular acetylcholine transporter (VAChT) and vesicular monoamine transporter (VMAT) transport neurotransmitter substrates into secretory vesicles. This review seeks to identify shared and differentiated aspects of the transport mechanisms. VAChT and VMAT exchange two protons per substrate molecule with very similar initial velocity kinetics and pH dependencies. However, vesicular gradients of ACh in vivo are much smaller than the driving force for uptake and vesicular gradients of monoamines, suggesting the existence of a regulatory mechanism in ACh storage not found in monoamine storage. The importance of microscopic rather than macroscopic kinetics in structure-function analysis is described. Transporter regions affecting binding or translocation of substrates, inhibitors, and protons have been found with photoaffinity labeling, chimeras, and single-site mutations. VAChT and VMAT exhibit partial structural and mechanistic homology with lactose permease, which belongs to the same sequence-defined superfamily, despite opposite directions of substrate transport. The vesicular transporters translocate the first proton using homologous aspartates in putative transmembrane domain X (ten), but they translocate the second proton using unknown residues that might not be conserved between them. Comparative analysis of the VAChT and VMAT transport mechanisms will aid understanding of regulation in neurotransmitter storage.  相似文献   

16.
Amphetamine is a highly addictive psychostimulant, which is thought to generate its effects by promoting release of dopamine through reverse activation of dopamine transporters. However, some amphetamine-mediated behaviors persist in dopamine transporter knock-out animals, suggesting the existence of alternative amphetamine targets. Here we demonstrate the identification of a novel amphetamine target by showing that in Caenorhabditis elegans, a large fraction of the behavioral effects of amphetamine is mediated through activation of the amine-gated chloride channel, LGC-55. These findings bring to light alternative pathways engaged by amphetamine, and urge rethinking of the molecular mechanisms underlying the effects of this highly-addictive psychostimulant.  相似文献   

17.
Receptor-mediated endocytosis of rat preputial beta-glucuronidase and the glycoconjugate mannose-BSA by rat alveolar macrophages is inhibited by chloroquine and ammonium chloride. We have previously reported that these drugs cause a loss of cell surface binding activity and that they do not inhibit internalization of receptor ligand complexes when incubated with cells at 37 degrees C. In this report we more clearly delineate the intracellular site of weak base inhibition of receptor recycling and the mechanism of that inhibition. From our analysis of the kinetics of ligand transport we conclude that there are two functionally distinct intracellular pools of receptor. One of these, the cycling pool, is not sensitive to the presence of weak bases, and receptor-ligand complexes return from this pool to the cell surface intact. The second pool is responsible for the time-dependent intracellular delivery of ligand to acid vesicles, which is inhibited by weak bases. Chloroquine and ammonium chloride appear to inhibit the dissociation of receptor-ligand complexed in this second pool and thereby the production of free receptors for the continuation of receptor-mediated endocytosis. We examine the internalization and binding of ligand in normal and paraformaldehyde-treated cells and find that these are strongly affected by pH. In particular, the dissociation rate of receptor ligand complexes is enhanced greater than 7.5 fold by lowering the medium pH from 7 to 6. From these results we propose that weak bases raise the pH of acid intracellular compartments, slowing the rate of receptor-ligand dissociation and thereby reducing the cellular pool of free receptors available for further uptake of ligand. In addition, we demonstrate that receptor-ligand complexes cannot return to the cell surface from the amine-sensitive (acid) intracellular pool that led us to call this the nonreleasable pool. This final observation indicates that receptor movements through these two pools are functionally distinct processes.  相似文献   

18.
Regulation of Extracellular Dopamine by the Norepinephrine Transporter   总被引:12,自引:6,他引:6  
Abstract: There is growing evidence of an interaction between dopamine and norepinephrine. To test the hypothesis that norepinephrine terminals are involved in the uptake and removal of dopamine from the extracellular space, the norepinephrine uptake blocker desmethylimipramine (DMI) was infused locally while the extracellular concentrations of dopamine were simultaneously monitored. DMI increased the extracellular concentrations of dopamine in the medial prefrontal cortex and nucleus accumbens shell but had no effect in the striatum. The combined systemic administration of haloperidol and the local infusion of DMI produced an augmented increase in extracellular dopamine in the cortex compared with the increase produced by either drug alone. This synergistic increase in dopamine overflow is likely due to the combination of impulse-mediated dopamine release produced by haloperidol and blockade of the norepinephrine transporter. No such synergistic effects were observed in the nucleus accumbens and striatum. Local perfusion of the α2-antagonist idazoxan also increased the extracellular concentrations of dopamine in the cortex. Although the stimulation of extracellular dopamine by idazoxan and DMI could be due to the increased extracellular concentrations of norepinephrine produced by these drugs, an increase in dopamine also was observed in lesioned rats that were depleted of norepinephrine and challenged with haloperidol. This contrasted with the lack of an effect of haloperidol on cortical dopamine in unlesioned controls. These results suggest that norepinephrine terminals regulate extracellular dopamine concentrations in the medial prefrontal cortex and to a lesser extent in the nucleus accumbens shell through the uptake of dopamine by the norepinephrine transporter.  相似文献   

19.
The role of external Ca2+ in the homeostasis of intracellular pH (pHi) of Anabaena sp. strain PCC7120 in response to a decrease in the external pH (pHex) has been studied in cell suspensions. Increase in cytoplasmic pH after acid shock is dependent on the presence of Ca2+ in the medium. The observed Ca2+-mediated alkalization of the cytoplasm depends on the extent of the shift in external pH. Acid pH shifts resulted in an increased permeability of the cytoplasmic membrane to protons, which could be reversed by increasing the concentration of Ca2+ in the medium. Thus, the ability of Ca2+ to increase cytoplasmic pH might be correlated with an inhibition of net proton uptake by increasing concentrations of external Ca2+ under these conditions. This combined response resulted in the generation and maintenance of a larger pH gradient (ΔpH) at acid external pH values. All Ca2+ channel blockers tested, such as verapamil and LaCl3, inhibited the observed Ca2+-mediated response. On the other hand, the Ca ionophore calcimycin (compound A23187) was agonistic, and stimulated both cytoplasmic alkalization and inhibition of net proton uptake. The protonophorous uncoupler carbonylcyanide m -chlorophenyl hydrazone, inhibited this Ca2+-mediated response, whereas monensin, an inhibitor of the Na+/H+ antiporter, had no significant effect. The results of the present study suggest that an influx of Ca2+ from the extracellular space is required for the regulation of cytoplasmic pH in Anabaena sp. strain PCC7120 exposed to low external pH values.  相似文献   

20.
Amphetamine can improve cognition in healthy subjects and patients with schizophrenia, attention-deficit hyperactivity disorder, and other neuropsychiatric diseases; higher doses, however, can impair cognitive function, especially those mediated by the prefrontal cortex. We investigated how amphetamine affects prefrontal cortex long-term potentiation (LTP), a cellular correlate of learning and memory, in normal and hyperdopaminergic mice lacking the dopamine transporter. Acute amphetamine treatment in wild-type mice produced a biphasic dose-response modulation of LTP, with a low dose enhancing LTP and a high dose impairing it. Amphetamine-induced LTP enhancement was prevented by pharmacological blockade of D(1) - (but not D(2)-) class dopamine receptors, by blockade of β-adrenergic receptors, or by inhibition of cAMP-PKA signaling. In contrast, amphetamine-induced LTP impairment was prevented by inhibition of post-synaptic protein phosphatase-1, a downstream target of PKA signaling, or by blockade of either D(1) - or D(2)-class dopamine, but not noradrenergic, receptors. Thus, amphetamine biphasically modulates LTP via cAMP-PKA signaling orchestrated mainly through dopamine receptors. Unexpectedly, amphetamine restored the loss of LTP in dopamine transporter-knockout mice primarily by activation of the noradrenergic system. Our results mirror the biphasic effectiveness of amphetamine in humans and provide new mechanistic insights into its effects on cognition under normal and hyperdopaminergic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号