首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Light and electron microscopy were used to compare spider book lung development with earlier studies of the development of horseshoe crab book gills and scorpion book lungs. Histological studies at the beginning of the 20th century provided evidence that spider and scorpion book lungs begin with outgrowth of a few primary lamellae (respiratory furrows, saccules) from the posterior surface of opisthosomal limb buds, reminiscent of the formation of book gills in the horseshoe crab. In spider embryos, light micrographs herein also show small primary lamellae formed at the posterior surface of opisthosomal limb buds. Later, more prominent primary lamellae extend into each book lung sinus from the inner wall of the book lung operculum formed from the limb bud. It appears most primary lamellae continue developing and become part of later book lungs, but there is variation in the rate and sequence of development. Electron micrographs show the process of air channel formation from parallel rows of precursor cells: mode I (cord hollowing), release of secretory vesicles into the extracellular space and mode II (cell hollowing), alignment and fusion of intracellular vesicles. Cell death (cavitation) is much less common but occurs in some places. Results herein support the early 20th century hypotheses that 1) book lungs are derived from book gills and 2) book lungs are an early step in the evolution of spider tracheae.  相似文献   

2.
The cobweb spider Parasteatoda tepidariorum (C. L. Koch, 1841; syn.: Achaearanea tepidariorum) has become an important study organism in developmental biology and evolution as well as in genetics. Besides Cupiennius salei, it has become a chelicerate model organism for evo-devo studies in recent years. However, a staging system taking into account the entire development, and detailed enough to apply to modern studies, is still required. Here we describe the embryonic development of P. tepidariorum and provide a staging system which allows easy recognition of the distinct stages using simple laboratory tools. Differences between P. tepidariorum and other chelicerates, primarily C. salei, are discussed. Furthermore, cocoon production and the first postembryonic moulting procedure are described. Schematic drawings of all stages are provided to ease stage recognition.  相似文献   

3.
We document the early morphogenesis of Latrodectus geometricus, particularly of the anterior body region. Significant changes in the development of the external prosomal structures revealed with scanning electron microscopy (SEM) images include: (1) reorganisation of each pre-cheliceral lobe by subdivision and internalisation of its central area; (2) shortening of the ventro-median bridge connecting the pre-cheliceral lobes and its eventual disappearance; (3) appearance and expansion of a prospective mouth region between the pre-cheliceral lobes with a recessed median area surrounded by lip-like borders, the anterior lip-part developing into the hypostome; (4) reduction of the mouth region to an area around the hypostome and the lip-like latero-posterior border of the mouth opening; (5) change of the position of the mouth region from anterior to the insertions of the chelicerae to posterior to them; (6) eventual shortening of the mouth opening to a slit overhung by the hypostome; (7) origination of the prosomal shield from the anterior margin of the pre-cheliceral lobes and the tergal portions of the four posterior-most prosomal segments; and (8) expansion of a ‘ventral sulcus’ from the cheliceral to the fifth opisthosomal segment separating the sides of these segments. Embryonic features are compared across the Chelicerata and discussed briefly in a phylogenetic context.  相似文献   

4.
The frizzled/starry night pathway regulates planar cell polarity in a wide variety of tissues in many types of animals. It was discovered and has been most intensively studied in the Drosophila wing where it controls the formation of the array of distally pointing hairs that cover the wing. The pathway does this by restricting the activation of the cytoskeleton to the distal edge of wing cells. This results in hairs initiating at the distal edge and growing in the distal direction. All of the proteins encoded by genes in the pathway accumulate asymmetrically in wing cells. The pathway is a hierarchy with the Planar Cell Polarity (PCP) genes (aka the core genes) functioning as a group upstream of the Planar Polarity Effector (PPE) genes which in turn function as a group upstream of multiple wing hairs. Upstream proteins, such as Frizzled accumulate on either the distal and/or proximal edges of wing cells. Downstream PPE proteins accumulate on the proximal edge under the instruction of the upstream proteins. A variety of types of data support this hierarchy, however, we have found that when over expressed the PPE proteins can alter both the subcellular location and level of accumulation of the upstream proteins. Thus, the epistatic relationship is context dependent. We further show that the PPE proteins interact physically and can modulate the accumulation of each other in wing cells. We also find that over expression of Frtz results in a marked delay in hair initiation suggesting that it has a separate role/activity in regulating the cytoskeleton that is not shared by other members of the group.  相似文献   

5.
6.
7.
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.  相似文献   

8.
9.
This work aims to investigate the origins and development of secretory cells in Piper umbellatum (L.) Miq. (Piperaceae) leaves as well as the course and the nature of their secretion. The results were compared with studies in oil-secreting cells of several species. Fully expanded fresh leaves were sectioned and subjected to different histochemical tests. Leaves in different developmental stages were fixed and processed for study under light and scanning and transmission electron microscopy techniques. The secretory cells show mixed secretion made up of hydrophobic (oleoresin) and hydrophilic (phenolic compounds and alkaloids) compounds. Secretory cells originate either from the protodermis or the ground meristem. The growth of these cells occurs primarily by increasing the volume of the central vacuole, which corresponds to an extraplasmatic space connected to a protuberance of the wall. Electron-opaque compounds are observed initially in leucoplasts, while electron-dense compounds occur in small vesicles in the cytoplasm. Both are accumulated in the central vacuole which is already developed. Besides the mixed chemical nature of the secretion identified in secretory cells of P. umbellatum leaves, these secretory cells differ from those that have already been described mainly because of the development of the central vacuole prior to the accumulation of the secretion.  相似文献   

10.
This work stems from the results of a recent phylogenetic investigation on the Euscorpius carpathicus species complex from the Italian peninsula (Salomone et al. 2004. Phylogenetic relationships between the sibling species Euscorpius tergestinus and E. sicanus (Scorpiones, Euscorpiidae) as inferred from mitochondrial and nuclear sequence data. In: Proceedings of the16th Congress of Arachnology, August 2-7, 2004, Ghent University, Belgium, 268pp.; Salomone et al. in prep.). Molecular investigation produced interesting and unexpected findings on the scorpion Euscorpius tergestinus (C.L. Koch, 1837). Both nuclear and mitochondrial sequence data provided evidence of substantial genetic differentiation in specimens identified as Euscorpius tergestinus according to recent taxonomical changes (Fet and Soleglad 2002. Morphology analysis supports presence of more than one species in the “Euscorpius carpathicus” complex (Scorpiones: Euscorpiidae). Euscorpius 3, 51pp.). These specimens clearly belong to two well-differentiated evolutionary lineages. Molecular results highlighted the need for a new morphological investigation. The present study undertook the morphological analysis of specimens belonging to both genotypes with the aim of identifying morphological characteristics able to discriminate between the two taxa. The analysis of trichobothria patterns, morphometric ratios, granulation patterns and the observation of the pectinal sensilla confirm the difficulty in distinguishing these two genotypes and the high polymorphism of the subgenus Euscorpius Thorell, 1876. The length of pedipalp segments and dorsal patellar spurs (DPS), as well as femur leg granulation, are the main diagnostic characters; other ratios together with body color also help to distinguish the different genotypes. This study confirms the presence in Italy of two different cryptic species belonging to the “Euscorpius tergestinus” complex. Euscorpius tergestinus is a reddish, slender euscorpiid with a large dorsal patellar spine (DPS). A darker and generally squat phenotype with a short DPS, which corresponds to Euscorpius carpathicus concinnus sensu Caporiacco (1950), is elevated to the species level: Euscorpius concinnus (C.L. Koch, 1837). These two species are sympatric in several Italian regions, and their distribution pattern is possibly determined by intraguild predaction interaction.  相似文献   

11.
Anatomy and ultrastructure of prosomal salivary glands in the unfed water mite larvae Piona carnea (C.L. Koch, 1836) were examined using serial semi-thin sections and transmission electron microscopy. Three pairs of alveolar salivary glands shown are termed lateral, ventro-lateral and medial in accordance with their spatial position. These glands belong to the podocephalic system and are situated on the common salivary duct from back to forth in the above mentioned sequence. The arrangement of the medial glands is unusual because they are situated one after another on the medial (axial) body line, therefore they are termed anterior and posterior medial glands. The secretory duct of the anterior medial gland mostly turns right, and the duct of the posterior gland turns left. The salivary glands are located in the body cavity partly inside the gnathosoma and in the idiosoma in front of the brain (synganglion). Each gland is represented by a single acinus (alveolus) and is composed of several cone shaped secretory cells arranged around the large central (intra-acinar) cavity with the secretory duct base. The cells of all glands are filled with secretory vesicles of different electron density. The remaining cell volume is occupied by elements of rough endoplasmic reticulum, and the membrane enveloping vesicles may have ribosomes on its external surface. Large nuclei provided with large nucleoli occupy the basal cell zones. The pronounced development of the prosomal salivary glands indicates their important role in extra-oral digestion of water mite larvae.  相似文献   

12.
The midgut of unfed larvae and adult mites of Platytrombidium fasciatum (C.L. Koch, 1836) and Camerotrombidium pexatum (C.L. Koch, 1937) (Acariformes: Microtrombidiidae) was investigated by electron microscopy. The sac-like midgut occupies the entire body volume, ends blindly and is not divided into functionally differentiated diverticula or caeca. The midgut walls are composed of one type of digestive cell that greatly varies in shape and size. In larvae, the lumen of the midgut is poorly recognizable and its epithelium is loosely organized, although yolk granules are already utilized. In adults, the midgut forms compartments as a result of deep folds of the midgut walls, and the lumen is well distinguished. The epithelium is composed of flat, prismatic or club-like cells, which may contain nutritional vacuoles and residual bodies in various proportions that depend on digestive stages. In both larvae and adult mites, parts of cells may detach from the epithelium and float within the lumen. The cells contain a system of tubules and vesicles of a trans-Golgi network, whereas the apical surface forms microvilli as well as pinocytotic pits and vesicles. Lysosome-like bodies, lipid inclusions and some amount of glycogen particles are also present in the digestive cells. Spherites (concretions) are not found to be a constant component of the digestive cells and in adult mites occur for the most parts in the midgut lumen.  相似文献   

13.
应用荧光紫杉醇直接荧光标记方法显示了一种腹毛类纤毛虫拟翁口虫(Onychodromopsis sp.)腹皮层纤毛器微管胞器及形态发生,根据该纤毛虫的皮层纤毛模式和纤毛器基部微管的形态,将其归为侧毛虫科(Pleurotrichidae)拟翁口虫属(Onychodromopsis);并据后仔虫口原基的发生、左右缘棘毛原基的...  相似文献   

14.
The polarities of several cells that divide asymmetrically during Caenorhabditis elegans development are controlled by Wnt signaling. LIN-44/Wnt and LIN-17/Fz control the polarities of cells in the tail of developing C. elegans larvae, including the male-specific blast cell, B, that divides asymmetrically to generate a larger anterior daughter and a smaller posterior daughter. We determined that WRM-1 and the major canonical Wnt pathway components: BAR-1, SGG-1/GSK-3 and PRY-1/Axin were not involved in the control of B cell polarity. However, POP-1/Tcf is involved and is asymmetrically distributed to the B daughter nuclei, as it is in many cell divisions during C. elegans development. Aspects of the B cell division are reminiscent of the divisions controlled by the planar cell polarity (PCP) pathway that has been described in both Drosophila and vertebrate systems. We identified C. elegans homologs of Wnt/PCP signaling components and have determined that many of them appear to be involved in the regulation of B cell polarity. Specifically, MIG-5/Dsh, RHO-1/RhoA and LET-502/ROCK appear to play major roles, while other PCP components appear to play minor roles. We conclude that a noncanonical Wnt pathway, which is different from other Wnt pathways in C. elegans, regulates B cell polarity.  相似文献   

15.
The organization of the salivary glands in ad libitum-fed adult females of the microtrombidiid mite Platytrombidium fasciatum (C. L. Koch, 1836) was observed using transmission electron microscopy. In all, four pairs of large simple alveolar salivary glands were determined, which have been named due to their position as posterior, ventral, medial and dorsal. These glands occupy a body cavity behind, around the base and partly inside the gnathosoma. The posterior glands are largest and possess large nuclei with greatly folded nuclear envelope. Secretory granules are electron-light, containing fine granular material and are partly provided with various lamellar inclusions inside the granules. The latter tend to be placed predominantly in the middle parts of the gland around the central (intra-alveolar) cavity. The remaining glands, conversely, are typically filled with tightly packed electron-dense secretory granules, except for the ventral glands, the granules of which may show a compound organization. The nuclei of all these glands occupy a peripheral position and are mostly pressed between the granules. No prominent endoplasmic reticulum or conspicuous Golgi bodies were observed within the salivary glands. The salivary glands are provided with a complex apparatus of the intra-alveolar cavity (acinar lumen) with the excretory duct base provided by a system of branched special cells producing the duct walls. The ventral glands open by separate ducts into the most posterior part of the subcheliceral space. Ducts of the posterior glands immediately fuse with the ducts of the tubular (coxal) glands. The common duct of each side of the body joins with the ducts of the medial and dorsal glands respectively, and opens into the subcheliceral space far anterior to that of the ventral glands.  相似文献   

16.
17.
The process of spermiogenesis and the structure of spermatozoa in the mite, Hafenrefferia gilvipes (Koch) were studied ultrastructurally. Spermiogenesis was divided into six stages. The spermatids at stage 1 have the usual structure. At stage 2 the structure of the mitochondria and their distribution in the spermatid start to change, leading to the formation of specific mitochondrial derivatives which are subsequently incorporated into the nucleus of the spermatozoon. Parallel to the transformation of mitochondria occurs a reorganization of the nuclear material. The fully formed spermatozoon has a tadpole-like shape, with the cell nucleus located in the distended part of the cell, and containing mitochondrial derivatives in its karyoplasm. Acrosome, flagellum and centrioles are absent. The participation of peripherally distributed microtubules, present in spermatids at stages 4 to 6, in the shaping of the spermatozoon has been suggested.  相似文献   

18.
Epithelial planar cell polarity (PCP) allows epithelial cells to coordinate their development to that of the tissue in which they reside. The mechanisms that impart PCP as well as effectors that execute the polarizing instructions are being sought in many tissues. We report that the epidermal epithelium of Drosophila embryos exhibits PCP. Cells of the prospective denticle field, but not the adjacent smooth field, align precisely. This requires Myosin II (zipper) function, and we find that Myosin II is enriched in a bipolar manner, across the parasegment, on both smooth and denticle field cells during denticle field alignment. This implies that actomyosin contractility, in combination with denticle-field-specific effectors, helps execute the cell rearrangements involved. In addition to this parasegment-wide polarity, prospective denticle field cells express an asymmetry, uniquely recognizing one cell edge over others as these cells uniquely position their actin-based protrusions (ABPs; which comprise each denticle) at their posterior edge. Cells of the prospective smooth field appear to be lacking proper effectors to elicit this unipolar response. Lastly, we identify fringe function as a necessary effector for high fidelity placement of ABPs and show that Myosin II (zipper) activity is necessary for ABP placement and shaping as well.  相似文献   

19.
Abstract In order to elucidate the mechanism regulating its seasonal life cycle, the photoperiodic response of Achaearanea tepidariorum has been analysed. Nymphal development was faster in long-day and slower in short-day photoperiods. The combined action of low temperature, poor food supply and short daylength induced diapause at an earlier developmental stage than short days alone. Thus, photoperiod is a primary factor inducing nymphal diapause, but the diapausing instar is influenced by both temperature and food supply. Hibernating nymphs became unresponsive to photoperiod in late December. After hibernation, however, sensitivity was restored and the nymphs remained sensitive to photoperiod throughout their life. This spider could also enter an imaginal or reproductive diapause. Photoperiod was again a primary inducing factor and temperature modified the photoperiodic response to some extent. The induction of the reproductive diapause was almost temperature-compensated whereas development was not. So the involvement of a photoperiodic counter system was suggested. Irrespective of whether the nymph had experienced diapause or not, the imaginal diapause was induced in response to a short-day photoperiod after adult moult. Based on these observations, the seasonal life cycle and the adaptive significance of nymphal and imaginal diapause are discussed.  相似文献   

20.
The Drosophila respiratory system consists of two connected organs, the tracheae and the spiracles. Together they ensure the efficient delivery of air-borne oxygen to all tissues. The posterior spiracles consist internally of the spiracular chamber, an invaginated tube with filtering properties that connects the main tracheal branch to the environment, and externally of the stigmatophore, an extensible epidermal structure that covers the spiracular chamber. The primordia of both components are first specified in the plane of the epidermis and subsequently the spiracular chamber is internalized through the process of invagination accompanied by apical cell constriction. It has become clear that invagination processes do not always or only rely on apical constriction. We show here that in mutants for the src-like kinase Btk29A spiracle cells constrict apically but do not complete invagination, giving rise to shorter spiracular chambers. This defect can be rescued by using different GAL4 drivers to express Btk29A throughout the ectoderm, in cells of posterior segments only, or in the stigmatophore pointing to a non cell-autonomous role for Btk29A. Our analysis suggests that complete invagination of the spiracular chamber requires Btk29A-dependent planar cell rearrangements of adjacent non-invaginating cells of the stigmatophore. These results highlight the complex physical interactions that take place among organ components during morphogenesis, which contribute to their final form and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号