首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of the entomopathogenic bacterium Photorhabdus luminescens contain two types of morphologically distinct crystalline inclusion proteins. The larger rectangular inclusion (type 1) and a smaller bipyramid-shaped inclusion (type 2) were purified from cell lysates by differential centrifugation and isopycnic density gradient centrifugation. Both structures are composed of protein and are readily soluble at pH 11 and 4 in 1% sodium dodecyl sulfate (SDS) and in 8 M urea. Electrophoretic analysis reveals that each inclusion is composed of a single protein subunit with a molecular mass of 11,000 Da. The proteins differ in amino acid composition, protease digestion pattern, and immunological cross-reactivity. The protein inclusions are first visible in the cells at the time of late exponential growth. Western blot analyses showed that the proteins appeared in cells during mid- to late exponential growth. When at maximum size in stationary-phase cells, the proteins constitute 40% of the total cellular protein. The protein inclusions are not used during long-term starvation of the cells and were not toxic when injected into or fed to Galleria mellonella larvae.  相似文献   

2.
We describe a method to generate in vivo collections of mutants orders of magnitude larger than previously possible. The method favors accumulation of mutations in the target gene, rather than in the host chromosome. This is achieved by propagating the target gene on a plasmid, in Escherichia coli cells, within the region preferentially replicated by DNA polymerase I (Pol I), which replicates only a minor fraction of the chromosome. Mutagenesis is enhanced by a conjunction of a Pol I variant that has a low replication fidelity and the absence of the mutHLS system that corrects replication errors. The method was tested with two reporter genes, encoding lactose repressor or lipase. The proportion of mutants in the collection was estimated to reach 1% after one cycle of growth and 10% upon prolonged cell cultivation, resulting in collections of 1012–1013 mutants per liter of cell culture. The extended cultivation did not affect growth properties of the cells. We suggest that our method is well suited for generating protein variants too rare to be present in the collections established by methods used previously and for isolating the genes that encode such variants by submitting the cells of the collections to appropriate selection protocols.  相似文献   

3.
Different strains of Streptococcus suis serotypes 1 and 2 isolated from pigs either contained a restriction-modification (R-M) system or lacked it. The R-M system was an isoschizomer of Streptococcus pneumoniae DpnII, which recognizes nucleotide sequence 5′-GATC-3′. The nucleotide sequencing of the genes encoding the R-M system in S. suis DAT1, designated SsuDAT1I, showed that the SsuDAT1I gene region contained two methyltransferase genes, designated ssuMA and ssuMB, as does the DpnII system. The deduced amino acid sequences of M.SsuMA and M.SsuMB showed 70 and 90% identity to M.DpnII and M.DpnA, respectively. However, the SsuDAT1I system contained two isoschizomeric restriction endonuclease genes, designated ssuRA and ssuRB. The deduced amino acid sequence of R.SsuRA was 49% identical to that of R.DpnII, and R.SsuRB was 72% identical to R.LlaDCHI of Lactococcus lactis subsp. cremoris DCH-4. The four SsuDAT1I genes overlapped and were bounded by purine biosynthetic gene clusters in the following gene order: purF-purM-purN-purH-ssuMA-ssuMB-ssuRA-ssuRB-purD-purE. The G+C content of the SsuDAT1I gene region (34.1%) was lower than that of the pur region (48.9%), suggesting horizontal transfer of the SsuDAT1I system. No transposable element or long-repeat sequence was found in the flanking regions. The SsuDAT1I genes were functional by themselves, as they were individually expressed in Escherichia coli. Comparison of the sequences between strains with and without the R-M system showed that only the region from 53 bp upstream of ssuMA to 5 bp downstream of ssuRB was inserted in the intergenic sequence between purH and purD and that the insertion target site was not the recognition site of SsuDAT1I. No notable substitutions or insertions could be found, and the structures were conserved among all the strains. These results suggest that the SsuDAT1I system could have been integrated into the S. suis chromosome by an illegitimate recombination mechanism.  相似文献   

4.
To understand the mechanism underlying toluene resistance of a toluene-tolerant bacterium, Pseudomonas putida GM73, we carried out Tn5 mutagenesis and isolated eight toluene-sensitive mutants. None of the mutants grew in the presence of 20% (vol/vol) toluene in growth medium but exhibited differential sensitivity to toluene. When wild-type cells were treated with toluene (1% [vol/vol]) for 5 min, about 2% of the cells could form colonies. In the mutants Ttg1, Ttg2, Ttg3, and Ttg8, the same treatment killed more than 99.9999% of cells (survival rate, <10−6). In Ttg4, Ttg5, Ttg6, and Ttg7, about 0.02% of cells formed colonies. We cloned the Tn5-inserted genes, and the DNA sequence flanking Tn5 was determined. From comparison with a sequence database, putative protein products encoded by ttg genes were identified as follows. Ttg1 and Ttg2 are ATP binding cassette (ABC) transporter homologs; Ttg3 is a periplasmic linker protein of a toluene efflux pump; both Ttg4 and Ttg7 are pyruvate dehydrogenase; Ttg5 is a dihydrolipoamide acetyltransferase; and Ttg7 is the negative regulator of the phosphate regulon. The sequences deduced from ttg8 did not show a significant similarity to any DNA or proteins in sequence databases. Characterization of these mutants and identification of mutant genes suggested that active efflux mechanism and efficient repair of damaged membranes were important in toluene resistance.  相似文献   

5.
Antimutagenic substances were purified from a culture supernatant of Lactobacillus plantarum KLAB21 cells isolated from kimchi, a Korean traditional fermented vegetable, and their characteristics were investigated. The antimutagenic substances were separated into two fractions by DEAE-cellulose ion-exchange column chromatography, which were designated the R1 and R2 fractions. The R1 fraction was then divided into two fractions again by Sephadex G200 gel filtration chromatography, and the fractions were designated R1-1 and R1-2. All three fractions were further purified using a Sepharose CL-6B gel filtration column. All the purified fractions were successfully stained with fuchsin as well as Coomassie brilliant blue, suggesting that they are glycoproteins. The purified fractions were confirmed to possess antimutagenic activity against N-methyl-N′-nitro-N-nitrosoguanidine on Salmonella enterica serovar Typhimurium TA100 cells. Their molecular masses were determined to be 16 (R1-1), 11 (R1-2), and 14 (R2) kDa on the Sepharose CL-6B column. Total sugar contents were 8.4% (R1-1), 7.3% (R1-2), and 9.4% (R2). The amino acid compositions of the fractions were different from each other; the major amino acids were glutamic acid (21.5%) and phenylalanine (17.1%) in the R1-1 fraction and glycine (41.3%) in the R1-2 fraction, but valine (31%) and phenylalanine (22.6%) were the major amino acids in the R2 fraction.  相似文献   

6.
Phase variation in Xenorhabdus and Photorhabdus spp. has a significant impact on their symbiotic relationship with entomopathogenic nematodes by altering the metabolic by-products upon which the nematodes feed. The preferential retention of the phase I variant by the infective-stage nematode and its better support for nematode reproduction than phase II indicates its importance in the bacterial-nematode interactions. However, there is no obvious role for phase II in these interactions. This study has revealed differences in the respiratory activity between the two phases of Xenorhabdus nematophilus A24 and Photorhabdus luminescens Hm. After experiencing periods of starvation, phase II cells recommenced growth within 2 to 4 h from the addition of nutrients, compared with 14 h for phase I cells, indicating a more efficient nutrient uptake ability in the former. The levels of activity of major respiratory enzymes were 15 to 100% higher in phase II cells from stationary cultures in complex media than in phase I cells. Transmembrane proton motive force measurements were also higher by 20% in phase II under the same conditions. The increased membrane potentials reflect upon the ability of the phase II variant to respond to nutrients, both through growth and nutrient uptake. It is postulated that while phase I cells are better adapted to conditions in the insect and the nematode, phase II cells may be better adapted to conditions in soil as free-living organisms.  相似文献   

7.
Diversity of the nitrous oxide reductase (nosZ) gene was examined in sediments obtained from the Atlantic Ocean and Pacific Ocean continental shelves. Approximately 1,100 bp of the nosZ gene were amplified via PCR, using nosZ gene-specific primers. Thirty-seven unique copies of the nosZ gene from these marine environments were characterized, increasing the nosZ sequence database fourfold. The average DNA similarity for comparisons between all 49 variants of the nosZ gene was 64% ± 10%. Alignment of the derived amino acid sequences confirmed the conservation of important structural motifs. A highly conserved region is proposed as the copper binding, catalytic site (CuZ) of the mature protein. Phylogenetic analysis demonstrated three major clusters of nosZ genes, with little overlap between environmental and culture-based groups. Finally, the two non-culture-based gene clusters generally corresponded to sampling location, implying that denitrifier communities may be restricted geographically.  相似文献   

8.
To assess the contributions of single-strand DNases (ssDNases) to recombination in a recBCD+ background, we studied 31 strains with all combinations of null alleles of exonuclease I (Δxon), exonuclease VII (xseA), RecJ DNase (recJ), and SbcCD DNase (sbcCD) and exonuclease I mutant alleles xonA2 and sbcB15. The xse recJ sbcCD Δxon and xse recJ sbcCD sbcB15 quadruple mutants were cold sensitive, while the quadruple mutant with xonA2 was not. UV sensitivity increased with ssDNase deficiencies. Most triple and quadruple mutants were highly sensitive. The absence of ssDNases hardly affected P1 transductional recombinant formation, and conjugational recombinant production was decreased (as much as 94%) in several cases. Strains with sbcB15 were generally like the wild type. We determined that the sbcB15 mutation caused an A183V exchange in exonuclease motif III and identified xonA2 as a stop codon eliminating the terminal 8 amino acids. Purified enzymes had 1.6% (SbcB15) and 0.9% (XonA2) of the specific activity of wild-type Xon (Xon+), respectively, with altered activity profiles. In gel shift assays, SbcB15 associated relatively stably with 3′ DNA overhangs, giving protection against Xon+. In addition to their postsynaptic roles in the RecBCD pathway, exonuclease I and RecJ are proposed to have presynaptic roles of DNA end blunting. Blunting may be specifically required during conjugation to make DNAs with overhangs RecBCD targets for initiation of recombination. Evidence is provided that SbcB15 protein, known to activate the RecF pathway in recBC strains, contributes independently of RecF to recombination in recBCD+ cells. DNA end binding by SbcB15 can also explain other specific phenotypes of strains with sbcB15.  相似文献   

9.
Yuichi Matsushima 《BBA》2009,1787(5):290-20499
The mitochondrial replicative DNA helicase is an essential cellular protein that shows high similarity with the bifunctional primase-helicase of bacteriophage T7, the gene 4 protein (T7 gp4). The N-terminal primase domain of T7 gp4 comprises seven conserved sequence motifs, I, II, III, IV, V, VI, and an RNA polymerase basic domain. The putative primase domain of metazoan mitochondrial DNA helicases has diverged from T7 gp4 and in particular, the primase domain of vertebrates lacks motif I, which comprises a zinc binding domain. Interestingly, motif I is conserved in insect mtDNA helicases. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying mutations in conserved amino acids in the N-terminal region, including the zinc binding domain. Overexpression of alanine substitution mutants of conserved amino acids in motifs I, IV, V and VI and the RNA polymerase basic domain results in increased mtDNA copy number as is observed with overexpression of the wild type enzyme. In contrast, overexpression of three N-terminal mutants W282L, R301Q and P302L that are analogous to human autosomal dominant progressive external ophthalmoplegia mutations results in mitochondrial DNA depletion, and in the case of R301Q, a dominant negative cellular phenotype. Thus whereas our data suggest lack of a DNA primase activity in Drosophila mitochondrial DNA helicase, they show that specific N-terminal amino acid residues that map close to the central linker region likely play a physiological role in the C-terminal helicase function of the protein.  相似文献   

10.
Mixed-linked glucanases (MLGases), which are extracellular enzymes able to hydrolyze β1,3-1,4-glucans (also known as mixed-linked glucans or cereal β-glucans), were identified in culture filtrates of the plant-pathogenic fungus Cochliobolus carbonum. Three peaks of MLGase activity, designated Mlg1a, Mlg1b, and Mlg2, were resolved by cation-exchange and hydrophobic-interaction high-performance liquid chromatography (HPLC). Mlg1a and Mlg1b also hydrolyze β1,3-glucan (laminarin), whereas Mlg2 does not degrade β1,3-glucan but does degrade β1,4-glucan to a slight extent. Mlg1a, Mlg1b, and Mlg2 have monomer molecular masses of 33.5, 31, and 29.5 kDa, respectively. The N-terminal amino acid sequences of Mlg1a and Mlg1b are identical (AAYNLI). Mlg1a is glycosylated, whereas Mlg1b is not. The gene encoding Mlg1b, MLG1, was isolated by using PCR primers based on amino acid sequences of Mlg1b. The product of MLG1 has no close similarity to any known protein but does contain a motif (EIDI) that occurs at the active site of MLGases from several prokaryotes. An internal fragment of MLG1 was used to create mlg1 mutants by transformation-mediated gene disruption. The total MLGase and β1,3-glucanase activities in culture filtrates of the mutants were reduced by approximately 50 and 40%, respectively. When analyzed by cation-exchange HPLC, the mutants were missing the two peaks of MLGase activity corresponding to Mlg1a and Mlg1b. Together, the data indicate that Mlg1a and Mlg1b are products of the same gene, MLG1. The growth of mlg1 mutants in culture medium supplemented with macerated maize cell walls or maize bran and the disease symptoms on maize were identical to the growth and disease symptoms of the wild type.  相似文献   

11.
Mcm10 (Dna43), first identified in Saccharomyces cerevisiae, is an essential protein which functions in the initiation of DNA synthesis. Mcm10 is a nuclear protein that is localized to replication origins and mediates the interaction of the Mcm2–7 complex with replication origins. We identified and cloned a human cDNA whose product was structurally homologous to the yeast Mcm10 protein. Human Mcm10 (HsMcm10) is a 98-kDa protein of 874 amino acids which shows 23 and 21% overall similarity to Schizosaccharomyces pombe Cdc23 and S.cerevisiae Mcm10, respectively. The messenger RNA level of HsMcm10 increased at the G1/S-boundary when quiescent human NB1–RGB cells were induced to proliferate as is the case of many replication factors. HsMcm10 associated with nuclease-resistant nuclear structures throughout S phase and dissociated from it in G2 phase. HsMcm10 associated with human Orc2 protein when overexpressed in COS-1 cells. HsMcm10 also interacted with Orc2, Mcm2 and Mcm6 proteins in the yeast two-hybrid system. These results suggest that HsMcm10 may function in DNA replication through the interaction with Orc and Mcm2–7 complexes.  相似文献   

12.
Wzz is a membrane protein that determines the chain length distribution of the O-antigen lipopolysaccharide by an unknown mechanism. Wzz proteins consist of two transmembrane helices separated by a large periplasmic loop. The periplasmic loop of Escherichia coli K-12 Wzz (244 amino acids from K65 to A308) was purified and found to be a monomer with an extended conformation, as determined by gel filtration chromatography and analytical ultracentrifugation. Circular dichroism showed that the loop has a 60% helical content. The Wzz periplasmic loop also contains three regions with predicted coiled coils. To probe the function of the predicted coiled coils, we constructed amino acid replacement mutants of the E. coli K-12 Wzz protein, which were designed so that the coiled coils could be separate without compromising the helicity of the individual molecules. Mutations in one of the regions, spanning amino acids 108 to 130 (region I), were associated with a partial defect in O-antigen chain length distribution, while mutants with mutations in the region spanning amino acids 209 to 223 (region III) did not have an apparent functional defect. In contrast, mutations in the region spanning amino acids 153 to 173 (region II) eliminated the Wzz function. This phenotype was associated with protein instability, most likely due to conformational changes caused by the amino acid replacements, which was confirmed by limited trypsin proteolysis. Additional mutagenesis based on a three-dimensional model of region I demonstrated that the amino acids implicated in function are all located at the same face of a predicted α-helix, suggesting that a coiled coil actually does not exist in this region. Together, our results suggest that the regions predicted to be coiled coils are important for Wzz function because they maintain the native conformation of the protein, although the existence of coiled coils could not be demonstrated experimentally.  相似文献   

13.
Culturing the bioluminescent bacterium Photorhabdus luminescens in nutrient broth (NB) is used to recover phase I cells. These phase I cells were highly luminescent for up to 7 h in this media and the luminosity could also be seen with the naked eye after a 15 min eye adjustment period in a dark room. Red pigmentation is a known trait of phase I cells and was visually distinct within the culture media. The color shade of the red pigment varied on nutrient agar and in NB suggesting that the concentration of the pigment produced is dependent upon density of phase I cells within a specified area. The specific growth rate (μ) and doubling time (g) was determined during the logarithmic growth phase to be 0.36 h−1 and 2.1 h, respectively in NB medium. The nematode-bacterium suspension was injected into larvae of Galleria mellonella to test for entomopathogencity. Within 24 h post-injection insect mortality was seen along with dark red pigmentation and extremely high luminosity indicating infection with P. luminescens.  相似文献   

14.
An extremely thermostable restriction endonuclease, PspGI, was purified from Pyrococcus sp. strain GI-H. PspGI is an isoschizomer of EcoRII and cleaves DNA before the first C in the sequence 5′ ^CCWGG 3′ (W is A or T). PspGI digestion can be carried out at 65 to 85°C. To express PspGI at high levels, the PspGI restriction-modification genes (pspGIR and pspGIM) were cloned in Escherichia coli. M.PspGI contains the conserved sequence motifs of α-aminomethyltransferases; therefore, it must be an N4-cytosine methylase. M.PspGI shows 53% similarity to (44% identity with) its isoschizomer, M.MvaI from Micrococcus variabilis. In a segment of 87 amino acid residues, PspGI shows significant sequence similarity to EcoRII and to regions of SsoII and StyD4I which have a closely related recognition sequence (5′ ^CCNGG 3′). PspGI was expressed in E. coli via a T7 expression system. Recombinant PspGI was purified to near homogeneity and had a half-life of 2 h at 95°C. PspGI remained active following 30 cycles of thermocycling; thus, it can be used in DNA-based diagnostic applications.  相似文献   

15.
A monoterpene -lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is active with (4R)-4-isopropenyl-7-methyl-2-oxo-oxepanone and (6R)-6-isopropenyl-3-methyl-2-oxo-oxepanone, lactones derived from (4R)-dihydrocarvone, and 7-isopropyl-4-methyl-2-oxo-oxepanone, the lactone derived from menthone. Both enantiomers of 4-, 5-, 6-, and 7-methyl-2-oxo-oxepanone were converted at equal rates, suggesting that the enzyme is not stereoselective. Maximal enzyme activity was measured at pH 9.5 and 30°C. Determination of the N-terminal amino acid sequence of purified MLH enabled cloning of the corresponding gene by a combination of PCR and colony screening. The gene, designated mlhB (monoterpene lactone hydrolysis), showed up to 43% similarity to members of the GDXG family of lipolytic enzymes. Sequencing of the adjacent regions revealed two other open reading frames, one encoding a protein with similarity to the short-chain dehydrogenase reductase family and the second encoding a protein with similarity to acyl coenzyme A dehydrogenases. Both enzymes are possibly also involved in the monoterpene degradation pathways of this microorganism.  相似文献   

16.
The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry worldwide. In order to identify genes involved in the early essential stages of pathogenesis, namely adhesion and colonization, Signature-tagged mutagenesis (STM) was applied to a previously established lung colonization model of infection by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; Sequence type complex 95). The study led to the identification of new genes of interest, including two adhesins, one of which coded for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis to date. Its gene product has been temporarily designated ExPEC Adhesin I (EA/I) until the adhesin-specific receptor is identified. Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Furthermore, complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein was successfully expressed in vitro. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial-like appendages protruding out of the bacterial outer membrane. We observed that this adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates, including APEC (54.4%), uropathogenic E. coli (UPEC) (65.9%) and newborn meningitic E. coli (NMEC) (60.0%), and absent in all of the 153 intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the B2 group of the EcoR classification and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this highly pathogenic complex. This is the first report of the newly identified and functionally characterized ExPEC adhesin I and its significant role during APEC infection in chickens.  相似文献   

17.
18.
A prolipase from Rhizopus oryzae (proROL) was engineered in order to increase its stability toward lipid oxidation products such as aldehydes with the aim of improving its performance in oleochemical industries. Out of 22 amino acid residues (15 Lys and 7 His) prone to react with aldehydes, 6 Lys and all His residues (except for the catalytic histidine) were chosen and subjected to saturation mutagenesis. In order to quickly and reliably identify stability mutants within the resulting libraries, active variants were prescreened by an activity staining method on agar plates. Active mutants were expressed in Escherichia coli Origami in a 96-well microtiterplate format, and a stability test using octanal as a model deactivating agent was performed. The most stable histidine mutant (H201S) conferred a stability increase of 60%, which was further enhanced to 100% by combination with a lysine mutant (H201S/K168I). This increase in stability was also confirmed for other aldehydes. Interestingly, the mutations did not affect specific activity, as this was still similar to the wild-type enzyme.  相似文献   

19.
Iron and manganese oxides or oxyhydroxides are abundant transition metals, and in aquatic environments they serve as terminal electron acceptors for a large number of bacterial species. The molecular mechanisms of anaerobic metal reduction, however, are not understood. Shewanella putrefaciens is a facultative anaerobe that uses Fe(III) and Mn(IV) as terminal electron acceptors during anaerobic respiration. Transposon mutagenesis was used to generate mutants of S. putrefaciens, and one such mutant, SR-21, was analyzed in detail. Growth and enzyme assays indicated that the mutation in SR-21 resulted in loss of Fe(III) and Mn(IV) reduction but did not affect its ability to reduce other electron acceptors used by the wild type. This deficiency was due to Tn5 inactivation of an open reading frame (ORF) designated mtrB. mtrB encodes a protein of 679 amino acids and contains a signal sequence characteristic of secreted proteins. Analysis of membrane fractions of the mutant, SR-21, and wild-type cells indicated that MtrB is located on the outer membrane of S. putrefaciens. A 5.2-kb DNA fragment that contains mtrB was isolated and completely sequenced. A second ORF, designated mtrA, was found directly upstream of mtrB. The two ORFs appear to be arranged in an operon. mtrA encodes a putative 10-heme c-type cytochrome of 333 amino acids. The N-terminal sequence of MtrA contains a potential signal sequence for secretion across the cell membrane. The amino acid sequence of MtrA exhibited 34% identity to NrfB from Escherichia coli, which is involved in formate-dependent nitrite reduction. To our knowledge, this is the first report of genes encoding proteins involved in metal reduction.  相似文献   

20.
Caulobacter crescentus is a gram-negative bacterium that produces a two-dimensional crystalline array on its surface composed of a single 98-kDa protein, RsaA. Secretion of RsaA to the cell surface relies on an uncleaved C-terminal secretion signal. In this report, we identify two genes encoding components of the RsaA secretion apparatus. These components are part of a type I secretion system involving an ABC transporter protein. These genes, lying immediately 3′ of rsaA, were found by screening a Tn5 transposon library for the loss of RsaA transport and characterizing the transposon-interrupted genes. The two proteins presumably encoded by these genes were found to have significant sequence similarity to ABC transporter and membrane fusion proteins of other type I secretion systems. The greatest sequence similarity was found to the alkaline protease (AprA) transport system of Pseudomonas aeruginosa and the metalloprotease (PrtB) transport system of Erwinia chrysanthemi. The prtB and aprA genes were introduced into C. crescentus, and their products were secreted by the RsaA transport system. Further, defects in the S-layer protein transport system led to the loss of this heterologous secretion. This is the first report of an S-layer protein secreted by a type I secretion apparatus. Unlike other type I secretion systems, the RsaA transport system secretes large amounts of its substrate protein (it is estimated that RsaA accounts for 10 to 12% of the total cell protein). Such levels are expected for bacterial S-layer proteins but are higher than for any other known type I secretion system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号