首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
RNA干扰(RNA interference,RNAi)是一种由干扰小RNA(small interfering RNA,siRNA)介导的转录后基因沉默.随着医学的发展,通过RNAi来抑制靶基因的表达已经成为一种强有力的研究基因功能、验证药物靶标和治疗多种疾病的方法.然而,RNAi在哺乳动物中的治疗应用却受到基因递送系统的限制,即siRNA在体内递送的靶向性.目前,各种配体,如糖基化分子、肽类、蛋白质、抗体和基因工程抗体片段对于靶向递送siRNA具有巨大的应用潜力.它们改善了基因递送系统的有效性、特异性和安全性.本文主要就单链抗体-鱼精蛋白截短体融合蛋白在 RNAi中的应用进行综述.  相似文献   

2.
RNAi及其在肿瘤研究中的应用   总被引:7,自引:0,他引:7  
RNA干扰(RNA interference,RNAi)是指在生物体细胞内,外源性或内源性的双链RNA(double-stranded RNA,dsRNA)引起与其同源mRNA特异性的降解,因而抑制其相应的基因表达过程.由于它能够高度特异性、高效性地抑制基因的表达,因此在研究基因功能及表达调控、信号传导通路、药物靶点的鉴定和基因药物开发等方面具有良好的应用前景.主要介绍RNAi可能的分子机制、分子生物学特性、产生方法及其在肿瘤研究中的应用.  相似文献   

3.
小干扰RNA靶向VEGF基因体内外抑制乳腺癌细胞MCF-7的增殖   总被引:3,自引:0,他引:3  
 血管生成与肿瘤生长、侵袭、转移密切相关.血管内皮生长因子能特异地促进内皮细胞分裂、增殖及迁移,在肿瘤新生血管生成过程中起着至关重要的作用.通过RNAi抑制VEGF表达的抗血管生成疗法可有效应用于肿瘤治疗.本研究采用化学修饰的siRNA在体内外抑制VEGF基因表达,探讨化学修饰的siRNA介导的RNA干扰技术在乳腺癌基因治疗的可行性和特异性.选用阳离子脂质体LipofectamineTM2000作为转染试剂,将针对人VEGF基因的小干扰RNA(small interfering RNA,siRNA)转染人类乳腺细胞株MCF-7和裸鼠移植瘤,在体内外诱导RNAi.采用四甲基偶氮唑蓝(MTT)法,逆转录聚合酶链反应(RT-PCR),蛋白印迹实验等检测siRNA治疗组和对照组VEGF基因表达及细胞增殖变化.体外实验结果显示:靶向VEGF基因siRNA转染乳腺癌MCF-7细胞后,细胞生长抑制率达52.5%;VEGF的mRNA和蛋白表达水平显著降低(P<0.01);裸鼠体内实验结果显示:siRNA治疗组瘤组织的增长受到明显抑制;RT-PCR结果同时表明治疗组VEGF表达下调.体内外对照组各指标无显著变化.化学修饰的siRNA介导的RNAi在体内外均能成功下调靶基因VEGF的表达,抑制MCF-7细胞增殖,是潜在的肿瘤治疗新方法.  相似文献   

4.
RNA干扰(RNA interference)是存在于真核细胞中的基因特异性沉默机制,可以抑制病毒抗原基因的表达或抵御转座子转座。自从发现以来,RNAi技术已在基因的功能性研究上显示出了强大的优势,特别是在动物病毒性疾病的治疗和预防上,相对于传统的疫苗预防和药物治疗有着无可比拟的优越性。在动物细胞中转入针对特异病毒的小干扰RNA(siRNA)或短发卡RNA(shRNA)激活RNAi通路可有效抑制病毒的复制。阐述RNA干扰的发生机制及其在动物疾病防治中的应用。  相似文献   

5.
RNA干扰是真核生物基因转录后水平的一种表达调控机制,它通过内源性或外源性的ds RNA介导细胞内靶标m RNA发生特异性降解或翻译抑制,从分子水平影响靶标基因的表达。该技术不仅广泛用于肿瘤基因结构与功能的探索研究,也为肿瘤基因靶向特异性治疗提供了新的技术手段。本文就RNA干扰的原理和特点,合成方法,以及目前RNA干扰在肿瘤基因研究中的应用方法及情况进行综述。  相似文献   

6.
余晓玲  孙恩杰  尹丹丹 《生物磁学》2009,(15):2995-2997
RNA干扰(RNA interference,RNAi)是指双链RNA(double-strand RNA,dsRNA)特异性降解同源mRNA,从而引发基因转录后水平沉默的现象,是一种高效、高特异性抑制基因表达的途径。自1998年Fire等发现RNA干扰现象以来,其特异性降解目的基因的优势吸引了众多研究者的目光。本文在简要综述RNAi技术在基因功能研究、抗病毒治疗,肿瘤基因治疗等领域的应用后,重点归纳了基因枪技术在RNAi研究即siRNA导入细胞中的应用,并简单分析其优势与意义。  相似文献   

7.
RNAi在基因缺陷模型方面的应用   总被引:3,自引:1,他引:2  
谭余良  殷勤伟 《遗传学报》2005,32(4):434-441
RNA干扰(RNA interference,RNAi)是指双链RNA(double-stranded RNA,dsRNA)分子导入细胞内后,促进与之同源的mRNA发生特异性的降解,从而高效并特异地阻断或抑制相应基因表达活性的现象。RNAi技术现已成为调控基因的表达,阐明细胞的信号通路和研究功能基因组学的有力工具,并迅速在临床医学上展现出基因药物的诱人前景。目前,人们已开始对RNAi技术在人类疾病预防和治疗中的应用进行研究.这些研究涉及到病毒感染、癌症、代谢性疾患以及遗传病等各个方面。通过综述siRNA分子的作用机制、载体构建以及其在基因缺陷模型的建立等方面的应用,从而展示出RNAi在相关疾病的分子机制研究和基因治疗方面的诱人前景。  相似文献   

8.
农杆菌介导的RNAi技术已广泛应用于研究植物基因的功能.本实验应用小块萝卜肉质根体外培养,探讨光照对干扰萝卜过氧化物酶基因Rsprx1表达的影响.结果表明,干扰萝卜过氧化物酶基因Rsprx1表达后,抑制组中过氧化物酶活性显著低于对照组,光照减弱RNAi的抑制作用;抑制作用始于浸染后4 h, 过氧化物酶活性减低时,花青素含量增加,但光照增加花青素含量;HPLC结果显示,与对照组比,抑制组中花青素苷种类和含量有较大差异;花青素合成相关基因(RsCHS、RsDFR和RsLDOX)的mRNA水平在处理后明显上调.此外,过氧化氢酶活性和H2O2含量相应升高.由此表明,光照可影响农杆菌介导的RNAi效果,干扰萝卜过氧化物酶基因Rsprx1表达可以通过影响花青素合成相关基因的表达和过氧化氢含量,从而影响花青素代谢.  相似文献   

9.
PolⅡ型启动子K14实现组织特异RNAi   总被引:3,自引:0,他引:3  
Dai R  Shen SJ  Wan PC  Shi GQ  Meng QY  Liu SR 《遗传》2011,33(7):757-762
RNAi(RNA interference,RNAi)是继基因打靶技术后的一种高效的研究基因功能的方法。细胞学实验和小鼠模型的研究结果表明,PolⅡ型启动子可以实现组织特异的RNA干扰,从而为鉴定基因在特定组织中的功能及作用机理提供了一个强有力的研究方法。为了能将这种方法用于转基因绵羊生产,探讨基因与绵羊毛囊发育的关系及其作用机制等,文章利用PolⅡ型CMV启动子和毛囊组织特异表达的人角蛋白14(K14)基因的启动子驱动eGFP-shRNA融合转录本的生成,从而实现敲低目的基因的表达。体外基因表达沉默效率分析(pEGFP-C1-shRNA和psiCHECK-BMP4双质粒共转染Hela细胞)结果表明,6个干扰序列均能有效地抑制BMP4基因的表达,抑制效率达到60%以上;体内表达沉默分析(只转染pEGFP-K14-shRNA质粒转染小鼠皮肤细胞系JB6-C41)的实验结果与体外分析结果相似,除3#序列外,其余干扰序列对BMP4基因的抑制效率都在60%以上,其中5#序列的效率达到80%以上。siRNA诱导的目标基因沉默中mRNA和蛋白水平的下降显著正相关。结果表明,设计构建的由PolⅡ型启动子K14驱动eGFP-shRNA融合转录本的形成,从而实现RNAi的研究方法是可行的,利用这种方法可以实现在特定细胞中敲低目的基因的表达水平。为在大家畜特别是绵羊中应用RNAi的方法分析目的基因在毛囊发育、对不同类型毛囊生长发育的诱导和调节等作用机理的研究提供一个参考方法。  相似文献   

10.
RNA干扰技术及其应用   总被引:2,自引:0,他引:2  
RNA干扰(RNAi)是利用具有同源性的双链RNA诱发序列特异的转录后基因沉默的现象。它可以通过抑制蛋白表达模拟基因敲除技术,从利用体外合成双链RNA到通过质粒稳定表达小型干扰RNA诱发RNA干扰现象,这项技术被不断完善,并被广泛的应用,尽管RNAi的作用机制仍不清楚,但实验证实在RNA干扰过程中,外源的双链RNA在体内会被切割成小片段,新的双链RNA被合成,从而RNAi的作用机制假说正被逐步修正,由于RNAi技术的高效性和特异性,它已经成为基因功能研究的一种新方法。  相似文献   

11.
Therapeutic genes for cancer gene therapy   总被引:2,自引:0,他引:2  
Cancer still represents a disease of high incidence and is therefore one major target for gene therapy approaches. Gene therapy for cancer implies that ideally selective tumor cell killing or inhibition of tumor cell growth can be achieved using nucleic acids (DNA and RNA) as the therapeutic agent. Therefore, the majority of cancer gene therapy strategies introduce foreign genes into tumor cells which aim at the immunological recognition and destruction, the direct killing of the target cells or the interference with tumor growth. To achieve this goal for gene therapy of cancer, a broad variety of therapeutic genes are currently under investigation in preclinical and in clinical studies. These genes are of very different origin and of different mechanisms of action, such as human cytokine genes, genes coding for immunstimulatory molecules/antigens, genes encoding bacterial or viral prodrug-activating enzymes (suicide genes), tumor suppressor genes, or multidrug resistance genes.  相似文献   

12.
p53 protein is probably the best known tumor suppressor. Earlier reports proved that human breast cancer cells expressing mutant p53 displayed resistance to apoptosis. This study is intended to investigate, the potential applications of RNA interference (RNAi) to block p53 expression, as well as its subsequent effect on cell growth, apoptosis and migration on a triple negative human breast cancer cell line (Hs578T). p53siRNA significantly reduced cell index (CI) compared to the control and we observed an inhibition of cellular migration in the interval of time between 0 and 30 h, as shown in the data obtained by dynamic evaluation using the xCELLigence System. Also, by using PCR-array technology, a panel of 84 key genes involved in apoptosis was investigated. Our studies indicate that the knockdown of p53 expression by siRNA modulates several genes involved in cell death pathways and apoptosis, showing statistically significant gene expression differences for 22 genes, from which 18 were upregulated and 4 were downregulated. The present research also emphasizes the important role of BCL-2 pro-apoptotic family of genes (Bim, Bak, and Bax) in activating apoptosis and reducing cell proliferation by p53siRNA treatment. Death receptors cooperate with BCL-2 pro-apoptotic genes in reducing cell proliferation. The limited success may be due to the activation of the antiapoptotic gene Mcl-1, and it may be associated with the resistance of triple negative breast cancer cells to cancer treatment. Thus, targeting p53siRNA pathways using siRNA may serve as a promising therapeutic strategy for the treatment of breast cancers.  相似文献   

13.
Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism.  相似文献   

14.
15.
Metastasis is a leading cause of mortality and morbidity in cancer. Urokinase (uPA), only expressed by the highly invasive cancer cells, has been implicated in invasion, metastases, and angiogenesis of several malignancies including breast cancer. Because uPA expression is strongly correlated with its hypomethylated state, we utilized the uPA gene in the highly invasive MDA-231 human breast cancer cells as a model system to test the hypothesis that pharmacological reversal of the uPA promoter hypomethylation would result in its silencing and inhibition of metastasis. S-Adenosyl-l-methionine (AdoMet) has previously been shown to cause hypermethylation and inhibit demethylation. Treatment of MDA-231 cells with AdoMet, but not its unmethylated analogue S-adenosylhomocysteine, significantly inhibits uPA expression and tumor cell invasion in vitro and tumor growth and metastasis in vivo. The effects of AdoMet on uPA expression were reversed by the demethylating agent 5'-azacytidine, supporting the conclusion that AdoMet effects are caused by hypermethylation. Knockdown of the methyl-binding protein 2 also causes a significant inhibition of uPA expression in vitro and tumor growth and metastasis in vivo. These treatments did not have any effects on estrogen receptor expression, suggesting that inhibition of hypomethylation will not affect genes already silenced by hypermethylation. These data are consistent with the hypothesis that hypomethylation of critical genes like uPA plays a causal role in metastasis. Inhibition of hypomethylation can thus be used as a novel therapeutic approach to silence the pro-metastatic gene uPA and block breast cancer progression into the aggressive and metastatic stages of the disease.  相似文献   

16.

Background

Genome-wide RNA interference (RNAi) screening is a very powerful tool for analyzing gene function in vivo in Caenorhabditis elegans. The effectiveness of RNAi varies from gene to gene, however, and neuronally expressed genes are largely refractive to RNAi in wild-type worms.

Results

We found that C. elegans strains carrying mutations in lin-35, the worm ortholog of the tumor suppressor gene p105Rb, or a subset of the genetically related synMuv B family of chromatin-modifying genes, show increased strength and penetrance for many germline, embryonic, and post-embryonic RNAi phenotypes, including neuronal RNAi phenotypes. Mutations in these same genes also enhance somatic transgene silencing via an RNAi-dependent mechanism. Two genes, mes-4 and zfp-1, are required both for the vulval lineage defects resulting from mutations in synMuv B genes and for RNAi, suggesting a common mechanism for the function of synMuv B genes in vulval development and in regulating RNAi. Enhanced RNAi in the germline of lin-35 worms suggests that misexpression of germline genes in somatic cells cannot alone account for the enhanced RNAi observed in this strain.

Conclusion

A worm strain with a null mutation in lin-35 is more sensitive to RNAi than any other previously described single mutant strain, and so will prove very useful for future genome-wide RNAi screens, particularly for identifying genes with neuronal functions. As lin-35 is the worm ortholog of the mammalian tumor suppressor gene p105Rb, misregulation of RNAi may be important during human oncogenesis.  相似文献   

17.
Seyhan AA 《Human genetics》2011,130(5):583-605
Dominant negative genetic disorders, in which a mutant allele of a gene causes disease in the presence of a second, normal copy, have been challenging since there is no cure and treatments are only to alleviate the symptoms. Current therapies involving pharmacological and biological drugs are not suitable to target mutant genes selectively due to structural indifference of the normal variant of their targets from the disease-causing mutant ones. In instances when the target contains single nucleotide polymorphism (SNP), whether it is an enzyme or structural or receptor protein are not ideal for treatment using conventional drugs due to their lack of selectivity. Therefore, there is a need to develop new approaches to accelerate targeting these previously inaccessible targets by classical therapeutics. Although there is a cooling trend by the pharmaceutical industry for the potential of RNA interference (RNAi), RNAi and other RNA targeting drugs (antisense, ribozyme, etc.) still hold their promise as the only drugs that provide an opportunity to target genes with SNP mutations found in dominant negative disorders, genes specific to pathogenic tumor cells, and genes that are critical for mediating the pathology of various other diseases. Because of its exquisite specificity and potency, RNAi has attracted a considerable interest as a new class of therapeutic for genetic diseases including amyotrophic lateral sclerosis, Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s disease (PD), spinocerebellar ataxia, dominant muscular dystrophies, and cancer. In this review, progress and challenges in developing RNAi therapeutics for genetic diseases will be discussed.  相似文献   

18.
RNA interference in cancer   总被引:11,自引:0,他引:11  
In the recent years, RNA interference (RNAi) has emerged as a major regulatory mechanism in eukaryotic gene expression. The realization that changes in the levels of microRNAs are directly associated with cancer led to the recognition of a new class of tumor suppressors and oncogenes. Moreover, RNAi has been turned into a potent tool for artificially modulating gene expression through the introduction of short interfering RNAs. A plethora of individual inhibitory RNAs as well as several large collections of these reagents have been generated. The systems for stable and regulated expression of these molecules emerged as well. These tools have helped to delineate the roles of various cellular factors in oncogenesis and tumor suppression and laid the foundation for new approaches in gene discovery. Furthermore, successful inhibition of tumor cell growth by RNAi aimed at oncogenes in vitro and in vivo supports the enthusiasm for potential therapeutic applications of this technique. In this article we review the evidence of microRNA involvement in cancer, the use of short interfering RNAs in forward and reverse genetics of this disease, and as well as both the benefits and limitations of experimental RNAi.  相似文献   

19.
Inhibition of gene expression can be achieved with RNA interference (RNAi) or U1 small nuclear RNA-snRNA-interference (U1i). U1i is based on U1 inhibitors (U1in), U1 snRNA molecules modified to inhibit polyadenylation of a target pre-mRNA. In culture, we have shown that the combination of RNAi and U1i results in stronger inhibition of reporter or endogenous genes than that obtained using either of the techniques alone. We have now used these techniques to inhibit gene expression in mice. We show that U1ins can induce strong inhibition of the expression of target genes in vivo. Furthermore, combining U1i and RNAi results in synergistic inhibitions also in mice. This is shown for the inhibition of hepatitis B virus (HBV) sequences or endogenous Notch1. Surprisingly, inhibition obtained by combining a U1in and a RNAi mediator is higher than that obtained by combining two U1ins or two RNAi mediators. Our results suggest that RNAi and U1i cooperate by unknown mechanisms to result in synergistic inhibitions. Analysis of toxicity and specificity indicates that expression of U1i inhibitors is safe. Therefore, we believe that the combination of RNAi and U1i will be a good option to block damaging endogenous genes, HBV and other infectious agents in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号