首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A split-root experiment investigated the effects of inoculation with the arbuscular mycorrhizal fungus Glomus mosseae and arsenic (As) addition on As uptake by Pteris vittata L. Either part or all of the root system was inoculated with G. mosseae or exposed to As addition (50 ml 1000 μmol L−1 As 1 week before harvest). Mycorrhizal colonization substantially increased frond and root dry weight and P and As contents irrespective of As addition. Frond As contents in mycorrhizal plants were highest when the whole root system was exposed to As. Frond As concentrations and contents were higher when inoculation and As addition were in the same parts of the root system than when spatially separate. There were positive effects of arbuscular mycorrhiza inoculation on plant growth and As uptake, and inoculation of part of the roots seemed to be as effective as inoculation of the whole root system.  相似文献   

2.
Maize (Zea mays L. cv. Alize) plants were grown in a calcareous soil in pots divided by 30-m nylon nets into three compartments, the central one for root growth and the outer ones for hyphal growth. Sterle soil was inoculated with either (1) rhizosphere microorganisms other than vesicular-arbuscular mycorrhizal (VAM) fungi, (2) rhizosphere microorganisms together with a VAM fungus [Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappel], or (3) with a gamma-irradiated inoculum as control. Plants were grown under controlled-climate conditions and harvested after 3 or 6 weeks. VAM plants had higher shootroot ratios than non-VAM plants. After 6 weeks, the concentrations of P, Zn and Cu in roots and shoots had significantly increased with VAM colonization, whereas Mn concentrations had significantly decreased. Root exudates were collected on agar sheets placed on the interface between root and hyphal compartments. Six-week-old VAM and non-VAM plants had similar root exudate compositions of 72–73% reducing sugars, 17–18% phenolics, 7% organic acids and 3% amino acids. In another experiment in which root exudates were collected on agar sheets with or without antibiotics, the amounts of amino acids and carbohydrates recovered were similar in VAM and non-VAM plants. However, threeto sixfold higher amounts of carbohydrates, amino acids and phenolics were recovered when antibiotics were added to the agar sheets. Thus, the high microbial activity in the rhizosphere and on the rhizoplane limits the exudates recovered from roots.  相似文献   

3.
We studied the production of xyloglucanase enzymes of pea and lettuce roots in the presence of saprobe and arbuscular mycorrhizal (AM) fungi. The AM fungus Glomus mosseae and the saprobe fungi Fusarium graminearum, Fusarium oxysporum-126, Trichoderma harzianum, Penicillium chrysogenum, Pleurotus ostreatus and Aspergillus niger were used. G. mosseae increased the shoot and root dry weight of pea but not of lettuce. Most of the saprobe fungi increased the level of mycorrhization of pea and lettuce, but only P. chrysogenum and T. harzianum inoculated together with G. mosseae increased the dry weight of pea and lettuce respectively. The AM and saprobe fungi increased the production of xyloglucanases by plant roots. The level of xyloglucanase activities and the number of xyloglucanolytic isozymes in plants inoculated with G. mosseae and most of the saprobe fungi tested were higher than when both microorganisms were inoculated separately. The possible relationship between xylogucanase activities and the ability of AM and saprobe fungi to improve the dry weight and AM root colonization of plants was discussed.  相似文献   

4.
Requena  Natalia  Mann  Petra  Hampp  Rüdiger  Franken  Philipp 《Plant and Soil》2002,244(1-2):129-139
The life cycle of the obligate biotrophic arbuscular mycorrhizal fungi comprises several well-defined developmental stages whose genetic determinants are still unknown. With the aim of understanding the molecular processes governing the early developmental phase of the AM fungal life cycle, a subtractive cDNA library was constructed using a suppressive subtractive hybridization technique. The library contains more than 600 clones with an average size of 500 bp. The isolated cDNAs correspond to genes up-regulated during the early development of the AM fungus Glomus mosseaeversus genes expressed in extraradical hyphae. The expression of several of the isolated genes was further confirmed by RT-PCR analysis. Among the isolated clones, a novel gene named GmGIN1 only expressed during early development in G. mosseae was found. The full-length GmGIN1 cDNA codes for a protein of 429 amino acids. The most interesting feature of the deduced protein is its two-domain structure with a putative self-splicing activity. The N-terminal domain shares sequence similarity with a novel family of GTP binding proteins while the C-terminus has a striking homology to the C-terminal part of the hedgehog protein family from metazoa. The C-terminal part of hedgehog proteins is known to participate in the covalent modification of the N-terminus by cholesterol, and in the self-splicing activity which renders the active form of the protein with signalling function. We speculate that the N-terminal part of GmGIN1, activated through a similar mechanism to the hedgehog proteins, has GTP-binding activity and participates in the signalling events prior to symbiosis formation.  相似文献   

5.
Summary To determine whether the expression of cell wall related genes changes during the establishment of an arbuscular mycorrhizal symbiosis (AM), we studied the expression of a maize hydroxyproline-rich glycoprotein (HRGP) gene. In situ hybridization showed that, in differentiated cells of maize roots, mRNA accumulation corresponding to the gene encoding for HRGP was only found when the cells were colonized by the endomycorrhizal fungusGlomus versiforme.  相似文献   

6.
7.
Leek plants (Allium porrum L.) inoculated with Glomus mosseae were raised on sterilized soil/sand medium amended with Ca(H2PO4)2.H2O to test the hypothesis that high concentration of soil P inhibits formation of vesicular-arbuscular (VA) mycorrhizas by reducing concentration of soluble carbohydrate in the root. When P supply was increased, from either P addition or VA mycorrhizal infection, there was initially also an increase in concentration of soluble carbohydrate in the root. At the concentration of soil P at which infection was reduced, concentration of soluble carbohydrate was at its maximum. Therefore the above hypothesis is discounted. An increased delay in infection establishment and a greater number of abortive entry points would suggest that high concentration of soil P reduces VA mycorrhizal infection by changing the anatomy of the root to make it resistant to fungal penetration.  相似文献   

8.
【背景】丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)是一类重要的土壤微生物,能显著影响植物对镉(cadmium,Cd)的耐性与累积,但其对不同形态Cd胁迫的响应尚不清楚。【目的】探讨不同形态Cd胁迫下接种AMF对玉米(Zea mays L.)生长和Cd累积的影响。【方法】采用30 cm高的培养容器填装石英砂(0.2 mm),开展室内砂培玉米试验,研究溶解态和胶体态Cd (1 mg/kg)胁迫下,接种摩西斗管囊霉(Funneliformis mosseae)对玉米幼苗生长、根系特征、光合生理及Cd累积的影响。【结果】双因素分析表明,AMF和Cd形态均对玉米生长(株高和生物量)、根系特征、光合生理(叶绿素含量和光合速率)与Cd累积量存在显著的影响,但二者之间没有显著交互作用。与未接种处理相比,接种AMF显著降低玉米株高、生物量、叶片叶绿素含量和光合速率,抑制玉米根长、根表面积、根体积和根尖数;同时增加了玉米根系Cd含量,但减少玉米地上部Cd含量以及地上部与根系Cd累积量;与胶体态Cd处理相比,溶解态Cd显著降低玉米的根长、根表面积、平均根系直径、根尖数和地上部Cd累积量,但增加了植株叶片光合速率、根系Cd含量和累积量。相关分析发现,玉米根长、根表面积和根尖数与地上部Cd含量呈显著或极显著正相关,与根系Cd含量呈极显著负相关。【结论】溶解态Cd比胶体态Cd对砂培玉米幼苗的毒害效应严重,而且接种AMF加重溶解态和胶体态Cd对玉米幼苗的损伤,但降低了植株对Cd的累积。  相似文献   

9.
The ability of fluorescent pseudomonads and arbuscular mycorrhizal fungi (AMF) to promote plant growth is well documented but knowledge of the impact of pseudomonad-mycorrhiza mixed inocula on root architecture is scanty. In the present work, growth and root architecture of tomato plants (Lycopersicon esculentum Mill. cv. Guadalete), inoculated or not with Pseudomonas fluorescens 92rk and P190r and/or the AMF Glomus mosseae BEG12, were evaluated by measuring shoot and root fresh weight and by analysing morphometric parameters of the root system. The influence of the microorganisms on phosphorus (P) acquisition was assayed as total P accumulated in leaves of plants inoculated or not with the three microorganisms. The two bacterial strains and the AMF, alone or in combination, promoted plant growth. P. fluorescens 92rk and G. mosseae BEG12 when co-inoculated had a synergistic effect on root fresh weight. Moreover, co-inoculation of the three microorganisms synergistically increased plant growth compared with singly inoculated plants. Both the fluorescent pseudomonads and the myco-symbiont, depending on the inoculum combination, strongly affected root architecture. P. fluorescens 92rk increased mycorrhizal colonization, suggesting that this strain is a mycorrhization helper bacterium. Finally, the bacterial strains and the AMF, alone or in combination, improved plant mineral nutrition by increasing leaf P content. These results support the potential use of fluorescent pseudomonads and AMF as mixed inoculants for tomato and suggest that improved tomato growth could be related to the increase in P acquisition.  相似文献   

10.
Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. was studied for its effect on their root colonization and plant growth of cucumber. Two isolates of Phoma sp. (GS8-2 and GS8-3) were tested with G. mosseae. The percent root length colonized by G. mosseae was not adversely affected by the presence of Phoma isolates. In contrast, the root colonization of both isolates GS8-2 and GS8-3 in 4-week-old plants was significantly reduced (80.7% and 84.3%, respectively) by added G. mosseae. Inoculating plants with each Phoma isolate significantly increased the shoot dry weight. However, dual inoculation of each Phoma isolate with G. mosseae had no significant effect on growth enhancement.  相似文献   

11.
Summary Ion uptake by dry bean root systems was examined during a three day treatment period. Three aeration treatments were applied to split root systems where both halves were aerated, both halves were nonaerated and one half aerated and the remaining half nonaerated (localized anoxia). Ion absorption was similar for the aerated control and localized anoxia treatments. The nonaerated control absorbed 2, 40, and 60 percent of the aerated control for K+, Ca++, and NO3 , respectively. Ion absorption by stressed plants appeared to increase directly with root growth in the aerated portions of the localized anoxia treatments. Localized anoxia resulted in greater potassium ion uptake per unit root weight and in greater root respiration rates of the aerated half of the Pinto III cultivar root system. Transpiration rates of Seafarer subjected to localized anoxia were 135% of the aerated control. The additional water use may have contributed to greater ion uptake, by mass flow, in the nonaerated portion of the localized anoxia treatment. Nutrient solutions of the nonaerated controls became more alkaline during stress than did the nonaerated portions of the localized anoxia treatments, indicating a possible direct or indirect effect of the aerated portions of the localized anoxia treatments on the corresponding nonaerated half. Compensation in ion uptake by dry bean roots subjected to localized anoxia appeared to be the result of increased root growth, greater respiration rates, greater transpiration rates and, for Pinto III, an increase in the ion uptake rate per unit root weight. This compensatory uptake of water and nutrients by the root system may be one mechanism by which roots overcome localized stress within a soil profile.  相似文献   

12.
Roussel  H.  van Tuinen  D.  Franken  P.  Gianinazzi  S.  Gianinazzi-Pearson  V. 《Plant and Soil》2001,232(1-2):13-19
Plant and Soil - Although there is evidence for an interplay of signalling/recognition events at different stages during plant/fungal interactions in arbuscular mycorrhiza, the nature of signalling...  相似文献   

13.
The influence of rhizosphere microorganisms and vesicular-arbuscular (VA) mycorrhiza on manganese (Mn) uptake in maize (Zea mays L. cv. Tau) plants was studied in pot experiments under controlled environmental conditions. The plants were grown for 7 weeks in sterilized calcareous soil in pots having separate compartments for growth of roots and of VA mycorrhizal fungal hyphae. The soil was left either uninoculated (control) or prior to planting was inoculated with rhizosphere microorganisms only (MO-VA) or with rhizosphere microorganisms together with a VA mycorrhizal fungus [Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe] (MO+VA). Mycorrhiza treatment did not affect shoot dry weight, but root dry weight was slightly inhibited in the MO+VA and MO-VA treatments compared with the uninoculated control. Concentrations of Mn in shoots decreased in the order MO-VA > MO+VA > control. In the rhizosphere soil, the total microbial population was higher in mycorrhizal (MO+VA) than nonmycorrhizal (MO-VA) treatments, but the proportion of Mn-reducing microbial populations was fivefold higher in the nonmycorrhizal treatment, suggesting substantial qualitative changes in rhizosphere microbial populations upon root infection with the mycorrhizal fungi. The most important microbial group taking part in the reduction of Mn was fluorescent Pseudomonas. Mycorrhizal treatment decreased not only the number of Mn reducers but also the release of Mn-solubilizing root exudates, which were collected by percolation from maize plants cultivated in plastic tubes filled with gravel quartz sand. Compared with mycorrhizal plants, the root exudates of nonmycorrhizal plants had two fold higher capacity for reduction of Mn. Therefore, changes in both rhizosphere microbial population and root exudation are probably responsible for the lower acquisition of Mn in mycorrhizal plants.  相似文献   

14.
K. Yano  A. Yamauchi  Y. Kono 《Mycorrhiza》1996,6(5):409-415
 The morphological responses of root systems to localized colonization by endophytes is not well understood. We examined the responses of lateral roots to the arbuscular mycorrhizal (AM) fungus Gigaspora margarita Becker & Hall inoculated locally into the soil. Peanut (Arachis hypogaea L.) and pigeon pea (Cajanus cajan (L.) Millsp.) were examined. Root boxes filled with nutrient-poor soil in were inoculated in one half with the fungus and in the other half with a sterilized inoculum. Responses were apparent after 30 days but not after 20 days. Overall, lateral root development was more advanced in inoculated soil. This was clearly observed for 2nd- and 3rd-order lateral roots, but less clear for 1st-order lateral roots in both species, although percentage of colonized root length was higher in 1st-order lateral roots. Whilst in peanut the responses were clearly evident at the level of lateral roots initiated on more proximal parts of the tap root axis, they occurred on more distal parts in pigeon pea. We conclude that plants under nutrient-poor conditions give priority to mycorrhizal roots when partitioning assimilation products within the root system. Thus, AM formation may induce local morphological alteration of root systems. Accepted: 29 August 1996  相似文献   

15.
New information on N uptake and transport of inorganic and organic N in arbuscular mycorrhizal fungi is reviewed here. Hyphae of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) were shown to transport N supplied as 15N-Gly to wheat plants after a 48 h labelling period in semi-hydroponic (Perlite), non-sterile, compartmentalised pot cultures. Of the 15N supplied to hyphae in pot cultures over 48 h, 0.2 and 6% was transported to plants supplied with insufficient N or sufficient N, respectively. The increased 15N uptake at the higher N supply was related to the higher hyphal length density at the higher N supply. These findings were supported by results from in vitro and monoxenic studies. Excised hyphae from four Glomus isolates (BEG 84, 107, 108 and 110) acquired N from both inorganic (15NH4 15NO3, 15NO3 or 15NH4 +) and organic (15N-Gly and 15N-Glu, except in BEG 84 where amino acid uptake was not tested) sources in vitro during short-term experiments. Confirming these studies under sterile conditions where no bacterial mineralisation of organic N occurred, monoxenic cultures of Glomus intraradices Schenk and Smith were shown to transport N from organic sources (15N-Gly and 15N-Glu) to Ri T-DNA transformed, AM-colonised carrot roots in a long-term experiment. The higher N uptake (also from organic N) by isolates from nutrient poor sites (BEG 108 and 110) compared to that from a conventional agricultural field implied that ecotypic differences occur. Although the arbuscular mycorrhizal isolates used contributed to the acquisition of N from both inorganic and organic sources by the host plants/roots used, this was not enough to increase the N nutritional status of the mycorrhizal compared to non-mycorrhizal hosts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The interaction between native and introduced fungi and their effect on plant growth and mineral uptake were studied. The host plants wereLygeum spartum andAnthyllis cytisoides, the introduced fungus wasGlomus fasciculatum. The four soils used were selected from disturbed and contaminated by mining activities areas. Inoculated and uninoculated plants were grown in the unsterilized and sterilized soils (with and withouth native microflora, respectively). Plants inoculated withG. fasciculatum were higher and had higher tissue P concentration than uninoculated plants, especially inA. cytisoides. However, this inoculation was not effective in unsterilized substrates, suggesting a competition between introduced and native fungi. Concentration of mineral elements other than P varied depending on the host plant and soil. Decrease in Fe, Cu, Mn, Zn and Pb was observed in mycorrhizalA. cytiosides plants and a slight increase in Zn concentration was noted in mycorrhizalL. spartum plants. The study showed that the type of soil and their populations of native endophytes have a considerable effect on plant response to mycorrhizal symbiosis, especially in disturbed soils.  相似文献   

17.
Physiological and molecular responses to phosphorus (P) supply and mycorrhizal infection by Glomus intraradices were compared in European (River) and African (H511) maize (Zea mays) cultivars to examine the extent to which these responses differed between plants developed for use in high- and low-nutrient-input agricultural systems. Biomass, photosynthetic rates, nutrient and carbohydrate contents, mycorrhizal colonization and nutrient-responsive phosphate transporter gene expression were measured in nonmycorrhizal and mycorrhizal plants grown at different inorganic phosphorus (P(i)) supply rates. Nonmycorrhizal River plants grew poorly at low P(i) but were highly responsive to mycorrhizal infection; there were large increases in biomass, tissue P content and the rate of photosynthesis and a decline in the expression of phosphate transporter genes. Nonmycorrhizal H511 plants grew better than River plants at low P(i), and had a higher root : shoot ratio. However, the responses of H511 plants to higher P(i) supplies and mycorrhizal infection were much more limited than those of River plants. The adaptations that allowed nonmycorrhizal H511 plants to perform well in low-P soils limited their ability to respond to higher nutrient supply rates and mycorrhizal infection. The European variety had not lost the ability to respond to mycorrhizas and may have traits useful for low-nutrient agriculture where mycorrhizal symbioses are established.  相似文献   

18.
19.
In two pot-culture experiments with maize in a silty loam (P2 soil) contaminated by atmospheric deposition from a metal smelter, root colonization with indigenous or introduced arbuscular mycorrhizal (AM) fungi and their influence on plant metal uptake (Cd, Zn, Cu, Pb, Mn) were investigated. Soil was -irradiated for the nonmycorrhizal control. In experiment 1, nonirradiated soil provided the mycorrhizal treatment, whereas in experiment 2 the irradiated soil was inoculated with spores of a fungal culture from P2 soil or a laboratory reference culture, Glomus mosseae. Light intensity was considerably higher in experiment 2 and resulted in a fourfold higher shoot and tenfold higher root biomass. Under the conditions of experiment 1, biomass was significantly higher and Cd, Cu, Zn and Mn concentrations significantly lower in the mycorrhizal plants than in the nonmycorrhizal plants, suggesting a protection against metal toxicity. In contrast, in experiment 2, biomass did not differ between treatments and only Cu root concentration was decreased with G. mosseae-inoculated plants, whereas Cu shoot concentration was significantly increased with the indigenous P2 fungal culture. The latter achieved a significantly higher root colonization than G. mosseae (31.7 and 19.1%, respectively) suggesting its higher metal tolerance. Zn shoot concentration was higher in both mycorrhizal treatments and Pb concentrations, particularly in the roots, also tended to increase with mycorrhizal colonization. Cd concentrations were not altered between treatments. Cu and Zn, but not Pb and Cd root-shoot translocation increased with mycorrhizal colonization. The results show that the influence of AM on plant metal uptake depends on plant growth conditions, on the fungal partner and on the metal, and cannot be generalized. It is suggested that metal-tolerant mycorrhizal inoculants might be considered for soil reclamation, since under adverse conditions AM may be more important for plant metal resistance. Under the optimized conditions of normal agricultural practice, however, AM colonization even may increase plant metal absorption from polluted soils.  相似文献   

20.
The activity of H+-ATPases of plant and fungi generates an electrochemical gradient of H+ across the cell plasma membrane that drives a number of secondary transport systems, including those responsible for the translocation of cations, anions, amino acids and sugars. During the last years, several studies have been aimed at elucidating the role of plasma membrane H+-ATPases in the nutrient exchange processes taking place between the plant and the fungus in arbuscular mycorrhizal (AM) symbiosis. This paper reviews present knowledge about plasma membrane H+-ATPases and experimental evidence supporting the involvement of H+-ATPases of both organisms in the bidirectional transport of nutrients between partners. Molecular strategies that will provide further information on the function and regulation of plasma membrane H+-ATPases in AM symbiosis are presented and discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号